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Functionally Graded Material

2 The dominant and higher-order asymptotic stress and displacement fields surrounding a
stationary crack embedded in a ductile functionally graded material subjected to anti-
plane shear loading are derived. The plastic material gradient is assumed to be in the

radial direction only and elastic effects are neglected. As in the elastic case, the leading
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(most singular) term in the asymptotic expansion is the same in the graded material as in
the homogeneous one with the properties evaluated at the crack tip location. Assuming a
power law for the plastic strains and another power law for the material spatial gradient,
we derive the next term in the asymptotic expansion for the near-tip fields. The second
term in the series may or may not differ from that of the homogeneous case depending on

the particular material property variation. This result is a consequence of the interaction
between the plasticity effects associated with a loading dependent length scale (the plas-
tic zone size) and the inhomogeneity effects, which are also characterized by a separate
length scale (the property gradient variation). [DOL: 10.1115/1.1876434]

1 Introduction

Numerous naturally occurring mechanical systems have prop-
erties that vary continuously and smoothly with position, usually
as a result of natural tailoring of their mechanical response to the
surrounding environment. Examples of such systems are found in
animal and human bone material as well as plant structures such
as wood and cellulose [1]. When specifically tailored for a man-
made engineering application, materials with a continuous spatial
property variation are often termed functionally graded materials
(FGMs). For the purpose of this study, an FGM is a material in
which the mechanical properties are continuous functions of po-
sition. Common forms of FGMs are metal/ceramic systems, which
combine the beneficial properties of a metal (toughness, ductility,
conductivity) with those of a ceramic (hardness, stiffness, heat
resistance). In both naturally occurring and manmade FGMs, the
material gradation can be either in a through-thickness or a radial
fashion. A through-thickness metal/ceramic FGM has potential ap-
plications in areas such as resistance to ballistic penetration and
wear resistance and heat shielding, where the ceramic side would
be brought into contact with the external agent and the metal side
would provide integral structural support. A radial property varia-
tion is commonly generated in many plant and bone structures and
in manmade situations, such as the graded polymeric matrix ma-
terial surrounding a fiber in a polymer matrix fiber reinforced
composite.

Progress in implementing FGM designs has been slower than
initially expected, not only because of the difficulty in manufac-
turing such materials [2], but also because of a lack of a funda-
mental understanding of their mechanical response and, in the
context of the present work, their fracture response. In comparison
with homogenous materials, only a limited number of studies have
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addressed the structure of the near-tip field in graded materials.
Delale and Erdogan [3] solved the mode I problem for a crack
parallel to the direction of material property gradient in an un-
bounded elastic FGM to extract values of the stress intensity fac-
tor. Although several studies of this type exist in the literature,
detailed description of the spatial structure of the near tip stress
field has been limited. A notable contribution is the work of Eis-
chen [4] who studied the asymptotic nature of the stress and dis-
placement fields around a crack tip in a graded material whose
elastic moduli were specified by continuous and generally differ-
entiable functions. Eischen [4] showed that the asymptotic stress
singularity at the crack tip in an FGM is of exactly the same form,
i.e., square root singular and with the same angular variation, as
that present at a crack tip in a homogeneous material [5]. Eischen
also indicated that higher-order terms are influenced by the details
of the material gradient distribution, although in the interest of
generality these terms were not studied in detail there. Recently,
Parameswaran and Shukla [6] computed these higher-order terms
(up to six) for an elastic FGM exhibiting a linear property
gradient.

Parameswaran and Shukla [7] studied the asymptotic nature of
the stress and displacement fields in a dynamically growing crack
in an elastic FGM having either an exponential or linear shear
modulus variation. Much like Eischen [4], they also saw that the
leading term for the case of the FGM is identical to that for the
homogeneous material and only higher-order terms are affected by
the material gradient. In general, it is physically reasonable to
assume that, locally, the material properties of an FGM can be
considered homogeneous. Therefore, it can be expected that the
leading term of the spatial distribution of stresses and displace-
ments for the FGM will always be the same as the homogeneous
case, although the extent of validity of this term may be minimal
and has to be investigated on a case-by-case basis [8].

To our knowledge, apart from the work of Eischen [4] and
Parameswaran and Shukla [6,7], there has not been any investiga-
tion of the detailed spatial structure of deformation fields in the
vicinity of crack tips in FGMs, especially in regards to the precise
nature of the influence of material gradient variation on higher-
order terms. Since FGMs possess an intrinsic length scale associ-
ated with the material gradient, higher-order terms may be af-
fected by this length scale. In addition, all theoretical studies thus
far have dealt with elastic FGMs, despite the fact that the metallic
FGM constituent is ductile. In the metal-rich region of a metal/
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ceramic FGM, the local response is effectively that of a graded
plastic material for which an additional length scale corresponding
to the plastic zone size exists.

The goal of the present work is to investigate in detail the
spatial distribution of the displacements and stresses near the tip
of a crack embedded in a plastic (ductile) FGM. Of particular
interest are the development of higher-order terms, their depen-
dence on material gradient and the interaction between the mate-
rial gradient length scale and the plastic zone size. Section 2 of
this paper presents the problem formulation. For mathematical
simplicity, a crack in an unbounded radially varying plastic FGM
under mode 3 loading is considered. Despite the limited applica-
bility of a radial gradient and mode 3 loading, this particular prob-
lem allows us to study the competition between the plasticity and
intrinsic gradient length scales in a tractable way. The leading
term of the near-tip solution is derived in Sec. 3. Section 4 pre-
sents a solution for the second-order term for both the homoge-
neous and graded plastic cases. A comparison of these two solu-
tions allows us to investigate in Sec. 5 the relationship between
the two length scales involved in this problem.

2 Problem Formulation

A semi-infinite, stationary crack embedded in a functionally
graded material subjected to far field mode 3 loading is consid-
ered. Let (r, ) denote a polar coordinate system with its origin
positioned at the crack tip. The sole surviving equilibrium equa-
tion for the mode 3 problem then is

O, +0lr+0r=0, (1)

where o,=0,, and oy=0, are the radial and tangential shear
stress components, respectively, and comma denotes partial differ-
entiation. We assume hereafter that the material response is de-
scribed by the infinitesimal J,-deformation theory of plasticity and
that the elastic contribution to the near-tip strains is negligible
compared to the plastic one. The Ramberg—Osgood power stress—
strain law

n—1
Sy _ §a<ﬂ> Sy @
8() a-() 0-(}

is used, where « is a nondimensional amplification factor, n is the
hardening exponent, &;; are the components of strain, and ¢, is the
strain at the initial yield strength o,. In Eq. (2), o, denotes the von
Mises equivalent stress given by

o, = \%SijSijv (3)

where S;; are the components of the deviatoric stress tensor. In the
above equations, repeated indices imply summation and the indi-
ces i and j range from 1 to 3. Gradation of the material into a
plastic FGM can be achieved by allowing a spatial variation in
any or all of a, n, g,, and o,,.

In the simpler antiplane shear setting, the stress—strain relation
takes the form

e 0,3 [3(0‘3+0‘§)}("W2

Lo T i

g, 0,2 o,

gy 03 |3t +07) (-1)72

et i @

where €,=¢,, and g4=¢gy, are the only nonzero components of the
strain tensor and are related to the out-of-plane displacement w by

1 ow

E=_""5 &g
Equations (4) can be inverted as
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e, )
. G[a 1(n=Dim> 96= G[s 10n=Dn (6)
e. e

o

e . . . »
where g,=V2g;;¢;;/3 is the equivalent strain and the “stiffness
parameter

2 o
- : 1/n (7)
3 (asl))
is a combination of the various material parameters entering the
constitutive relation Eq. (2). In the present work, in order to keep
the problem mathematically tractable, we allow the material prop-
erties to vary radially except for the hardening exponent n which
is taken to be constant. Therefore, the radially varying FGM can
be generated by variations of the material parameters «, €,, and
o,, and can be expressed collectively as a radial variation of the
modulus G defined in Eq. (7), i.e., G=G(r). Using the constitutive
equation (6), the equilibrium relation Eq. (1) can be written in
terms of the strains as

1de 1de, oe de
2 2 0 r 0 2 2 r
ne +eyl——+(1—-n)e,egg| —— +— | +|e. +neyl—
[ne; e]rﬁﬁ ( ) H|:rz90 &r} Le; 6](9}’
& g, | rG’
+ n[s% + s%,]—r +n[sf + sé]—'{—} =0, (8)
r r| G

where G’ =dG/dr. The boundary conditions involve mode 3 sym-
metry ahead of the crack

w(r,0)=0, )
and traction-free conditions along the crack faces

oy(r,m) =0. (10)

3 Leading Asymptotic Term

In this section, we first consider the effect of material property
variation on the leading (most singular) term of the near-tip
asymptotic solution. The asymptotic near-tip fields for a mode 3
crack in a homogeneous ductile material have been derived by
Amazigo [9] using a hodograph transformation technique. We use
here a different approach based on the following assumed sepa-
rable form of the displacement field near the crack tip:

wir6) _

r p+l
A(—) f(0) asr—0, (11)

rp rp
where the power p denotes the strain singularity and must be
greater than —1 to ensure a bounded displacement at the crack tip,
while A is a nondimensional amplification factor. Tn Eq. (11), r,
denotes the load-induced length scale (plastic zone size) and is
used in this study to normalize all length parameters. An expres-
sion for r, based on the leading terms of the elastic and plastic
asymptotic solutions is provided at the end of this section.
Combining Egs. (11), (5), and (8) leads to

rp T G'(rlrp)

¢ =0, (12)

+
! rprp G(rlrg)

where rp denotes the intrinsic material length scale associated
with the material gradient (see Sec. 4.1), and ¢, and ¢, are given
by

by =[np+ D>+ + @+ DIp+n) +(p+ (1 -n)]
X(FPf+(p+n)p+1)7°F,

by =[n(p + 1)°F +n(p + ()], (13)
with f'=df/d6 and f"=d*f/d®. In Eq. (12), the term ¢, would
be present for the homogeneous material, while the term associ-
ated with ¢, is the contribution due to the material property gra-
dient. If no gradient exists, Eq. (12) reduces to ¢;=0 and the
solution for the homogeneous material is recovered [9]. Note that

Transactions of the ASME



the term involving ¢, contains a ratio of the two inherent length
scales involved in this problem, namely the plastic zone size (a
function of external loading and plastic properties) and the mate-
rial property gradient.

Since at this stage we are only interested in the most singular
term of the stress field, it can readily be observed from Eq. (12)
that, as long as G(r) is finite and strictly positive at the origin (as
physically required), the leading order is found by solving ¢;=0,
which is identical to the equation found in the homogenous case.
The leading term for the displacement and stress fields is thus the
same for the plastic FGM material as for the plastic homogeneous
material [9] with the material properties evaluated at the tip
(G(r=0)) and p=—n/(n+1).

The fully plastic asymptotic solution is expected to be valid in
a region very close to the crack tip [10,11]. Under small scale
yielding conditions, the stress state beyond this region decays to
the linearly elastic asymptotic solution. An estimate of the plastic
zone size rp can therefore be obtained by equating the elastic and
plastic leading-order asymptotic approximations for the stresses
under equivalent far-field loading [12]. For simplicity, we com-
pare here the estimates of the equivalent stress o“ along the crack
line (6#=0). The elastic and plastic asymptotic expressions are,
respectively,

K ut
(o-e)elastic =~ /_i = —, asr—Q0, (14)
NzTr wr
g, J phn
(oﬂ)p]astic = _ﬁ rp/n’ asr — O, (15)
3\ ag,0,l,

with [, denoting a known function of the exponent n (Eq. (3.25)
and Fig. 2 in [13]). In Eq. (14) and Eq. (15), J denotes the value
of the J-integral [14]

ou;
J:f (Wnl—a,-j—uin,-)ds
r (?.xl

as the contour T is shrunk to the crack tip in the FGM case [15].
Equating the asymptotic expressions of Egs. (14) and (15) yields
the following estimation of the plastic zone size:

J ( 3/-“ )(nﬂ)/(n—])

(16)

(ag, )", (17)

rp=—"

O, \ 70,

4 Two-Term Asymptotic Approximation

We now investigate whether and how higher-order terms are
affected by the material property gradient. In Sec. 4.1, we inves-
tigate the conditions under which a separable higher-order solu-
tion is possible for the asymptotic displacement field. In Sec. 4.2,
we compare our results to those of the two-term asymptotic field
around the tip of a crack in a plastic homogeneous material sub-
jected to mode 3 loading, obtained by Aravas and Blazo [13] and
Anheuser and Gross [16] using different solution techniques. The
technique employed here is then extended in Sec. 4.3 to the mode
3 fracture problem in a graded plastic material. As will be seen in
the following discussion, the exponent of the second term in the
homogenous case plays a key role since it provides an upper
bound for the region of validity of the FGM solution.

4.1 Existence of a Separable Solution. In Sec. 2, all the
material properties that possess a spatial dependence were com-
bined into one single functional form described by Eq. (7). A
specific radial variation of G(r) can be arrived at by choosing
different variations of the underlying material properties («, &,
and o,). Note once again that in the present analysis the hardening
exponent n is not allowed to vary with position. The equilibrium
equation (8) can be rewritten as

Journal of Applied Mechanics

4 —=
_____ - -7 ¢
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Fig. 1 Influence of property gradient exponent ¢ on the varia-

tion of plastic material properties surrounding the crack tip lo-
cated at r/re=0

GA\(g,,e9,n) + Ay(e,,80,n)rG' =0, (18)
where A and A, are differential operators that depend only on the
angle 6 (Egs. (12) and (13)). Expressing G as

G=Gy+ ¥r), (19)
where G is the material property at the crack tip (with Gy>0)

and ¢(0)=0, the leading orders of the equilibrium equation are
recast as

G()A] = 0,

!
-
A+ rw—()/\z =0.
Y(r)
A variable separable solution is possible in the graded case only
when

(20)

%:cé lﬂ(}’)=Gl<i) ,

where G is a constant and r denotes the aforementioned intrinsic
length scale associated with the material property gradient. The
leading term derived in the previous section is recovered if the
gradient exponent ¢=0 and this case is not considered hereafter.
To keep the modulus G positive and bounded in the vicinity of the
crack tip, ¢ and G, must be strictly positive (¢>0,G,>0). The
physical significance of ¢ can be visualized in Fig. 1, which pre-
sents the variation of G over the graded region for G;=3G. De-
creasing the value of ¢ makes the property variation near the crack
tip more severe. Thus the value of ¢ is expected to control whether
higher-order terms near the crack tip region will be affected by the
material property variation or whether they will remain the same
as in the homogeneous case. For example, it is clear from Fig. 1
that, for a value of ¢=5, when viewed at the scale of the entire
gradient, the material appears essentially homogeneous in a large
region surrounding the crack tip (up to approximately r=0.3rz).
The opposite is true for a small value of ¢(c<1), where the ma-
terial gradient is very strong in the vicinity of the crack tip and is
therefore expected to affect the asymptotic fields. Note finally that
G| can be negative, leading to a “softening” radially varying FGM
for which the “stiffness” parameter G(r) decreases away from the
crack tip. As will be shown later, the combined effect of the sign
and amplitude of the material gradient can be captured by a single
parameter.

A variable separable solution to the crack problem does not

(21)
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appear to be possible in the FGM case for a property variation
other than that described by Egs. (19) and (21). However, it is
important to recognize that we are only interested in higher-order
contributions to the asymptotic solution and that Egs. (19) and
(21) with ¢=1 can be considered as the first two terms of a Taylor
series expansion for G in the vicinity of the crack tip

G(r)=GO+Gl(rL> T
F

(22)

To conclude this section, let us mention that the introduction of a
material length scale in a fracture problem may change the con-
ditions for existence of a separable solution. In a recent example it
was found that no separable solution was possible within the
framework of the gradient theory of plasticity [17].

4.2 Homogeneous Case. This homogeneous case has been
solved by Aravas and Blazo [13] using a stress-based formulation
and Anheuser and Gross [16] using a perturbation technique. In
the displacement-based approach adopted here, we start from the
following form of the near-tip displacement field w:

p+1 g+1
w(r.) xA<L) f(6)+B<L> g(6) asr—0, (23)
rp rp rp

where A and B are nondimensional amplitude factors, p and g are
the exponents for the leading and second terms, respectively (with
q>p). Substituting Eq. (23) into Eq. (8) yields, for the two lead-
ing orders,

Ar3”’1d)1 = 0,

Brr gy =0, (24)

where the first equation is identical to that used to derive p and f,
and

b3=[n(p+1)*f+ 118" +2[n(p+ g+ 1fg +fg' 1"+ (1 -n)
X(p+ Dff'2q+1)g" + (1 -n)l(p+ 1)fg" + (g + 1)gf'1(2p
+Df +H{(p+ 1’ +nfqlg+ Dg +2{(p + (g + 1)fg
+nf'g"tp(p+ Df +n{(p+ 1+ Mg + Dg +2n{(p + 1)
X(g+Dfg+f'g'p+1f. (25)

The eigenvalue problem for g and g(6) is completed with the

boundary conditions [g(0)=g’(7)=0] and a normalization condi-

tion [chosen here to be g’(0)=1] and can be solved numerically,
leaving the amplitude B undetermined by this asymptotic analysis.

The variation of ¢ with respect to n (for 1 <n<10) is shown as

open circles in Fig. 2, which also contains the elastic-plastic and

purely plastic solutions obtained by Aravas and Blazo [13]. As can

be seen in Fig. 2, the second asymptotic term is singular for n

>3.5. The value of g obtained for the homogeneous case is de-

noted by ¢, in the remainder of the paper. As discussed in the next

section, g;, plays a key role in the determination of the region of
validity of the asymptotic solution for the FGM case.

43 FGM Case. Let us now turn our attention to the
asymptotic solution for the mode 3 fracture problem in a radially
varying FGM with properties described by Eq. (19) and Eq. (21).
We again seek solutions for the displacement field of the form of
Eq. (23) with ¢ > p. Substituting Eq. (23) into Eq. (8) and rewrit-
ing the boundary and normalization conditions, we obtain the fol-
lowing boundary value problem for g:

~\8
p3+m| —| $=0,
r'p
g(0)=g'(m)=0, g'(0)=1, (26)
where B=c—(g—p), ¢, and ¢; have been defined in Eq. (13) and

Eq. (25), and m=7y A/B with
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Fig. 2 Variation with respect to n of the exponent of the first
(p, dotted curve) and second (g, symbols) asymptotic terms,
including the purely plastic and elastic-plastic solutions ob-

tained by [13]

c

'y=c<i)<2) . (27)
Go/ \rg

The parameter 7 plays a critical role in this asymptotic study, as it
allows us to quantify in a simple unified fashion the combined
effect of the nature, amplitude and extent of the material gradient
(through the exponent c, the ratio G;/G, and the ratio rg/rp,
respectively).

Three separate cases must be considered for the solution of Eq.
(26) based on the sign of B.

Case (i) B<0 (g>p+c):

Asymptotically, Eq. (26) reduces to ¢,=0. Since ¢, depends
only on f [Eq. (13)], this would require f to make ¢, and ¢,
vanish simultaneously. Such a solution is not possible and no
separable solution can exist for the second term in this case.

Case (ii) B>0 (g<p+c):

In this case, the coefficient of ¢, does not contribute asymp-
totically to the solution and hence the function g must satisfy
¢3=0. The solution to the FGM case is thus identical to the ho-
mogeneous case described in Sec. 4.2 up to the second term (i.e.,
q=qy)- It is possible that the third-order term may be affected, but
this is beyond the scope of this work.

Case (iii) B=0 (g=c+p):

In this particular case, the FGM solution for the second-order
term is different from the homogeneous one. Unlike in the homo-
geneous case where ¢ was the solution of an eigenvalue problem,
q is now fully determined by the values of the “material” expo-
nents n and c, as

q=c+p, (28)
with p=-n/(n+1). This FGM case presents another distinguish-
ing feature: the amplitude parameter B appearing in the second
term of the near-tip expansion Eq. (23), which was left undeter-
mined in the homogeneous case, is now fully determined. Only the
amplitude of the first term [denoted by A in Eq. (23)] is left
undetermined by the analysis and can be related to the value of the
J-integral. As indicated earlier, this separable solution is only
valid for a limited range of ¢ values: 0 <c<c.«=¢,—p- Indeed,
when ¢ exceeds ¢,y We revert to case (ii) discussed above, and
the second term of the asymptotic expansion in the FGM case is
given by that of the homogeneous problem. In that case, the gra-
dient may affect only the third or higher-order terms in the expan-
sion. This result is consistent with the comments made earlier in
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Fig. 3 Variation of m with respect to the material exponents n
(1=n=<10) and c [0<c=<cCx(N)]

Fig. 1. Physically, increasing ¢ makes the property change less
steep around the crack tip, thus extending the range over which
the material can be considered “homogeneous.” The homoge-
neous exponent g, i.e., the strength of the second term in the
homogeneous case, therefore determines, through c,,x=¢,—p, the
material gradient variation beyond which the second term in the
asymptotic series will be not affected by the heterogeneity of the
material.

For the case of 0<c=c,,. the governing equation for g
becomes

b3 +mep, =0, (29)

with m=vy A/B and vy defined by Eq. (27). The eigenvalue prob-
lem can again be solved numerically. The variation of m with
respect to the material parameters ¢ and n is shown as a contour
plot in Fig. 3 for 1<n=<10 and 0<c<c,,,(n). As expected, m
tends to zero (i.e., for a given value of 7, the second term becomes
increasingly dominant) as ¢ approaches cp,,. When c=cp,y, the
exponent of the second asymptotic term of the FGM case equals
that of the homogeneous case and B becomes indeterminate. The
case n=1 requires special attention. For this value of n, which
yields a linear relation between stress and strain components, no
solution can be found for the eigenvalue problem described by Eq.
(29). The material gradient does not therefore affect the first two
terms of the near-tip asymptotic expansion, in agreement with
earlier results obtained by Parameswaran and Shukla [6].

The angular function g(6) of the second asymptotic term for w
is presented in Fig. 4 for two values of n (n=8 and n=20) and for
four values of the exponent ¢ for each n. As ¢— 0, the second-
order term approaches the first one (¢— p) and g approaches f. In
the other extreme case (¢ — Cpay)s ¢ — ¢ and the corresponding
angular function of the FGM problem approaches that of the ho-
mogeneous one.

5 Discussion

It is clear from the above results that in the FGM problem a
competition takes place between the crack tip stress field setting
up a second term that is the same as the homogeneous case (of
strength ¢g,) and one that is affected by material gradient (of
strength g=c+p). This competition occurs in the shadow of the
most singular term (of strength p) that is the same for the homo-
geneous and graded cases. To visualize the combined effect of the
first two terms of the asymptotic solution, we present contour
plots of the radial (o) and tangential (o) shear stresses (normal-
ized by G) obtained by combining Egs. (5)-(7), (15), (17), and
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Fig. 4 Angular variation of the second asymptotic term for the
graded case for (a) n=8 (Ccphx=0.520) and (b) N=20 (Cpax
=0.283), and for various values of ¢

(23). For reference, stress contours corresponding to the one- and
two-term homogeneous solutions are shown in Figs. 5(a) and
5(b), respectively, for n=8 (p=—-0.889 and ¢,=-0.369) and up to
a radius 7=0.8 rp. In the immediate vicinity of the crack tip, the
solution is completely characterized by the first term. The influ-
ence of the second term is only felt outside of the “core region”
and depends on the adopted B/A ratio (chosen to be 0.3 in these
contour plots). Recall that for the homogeneous case, the ratio
B/A is left undetermined by the asymptotic analysis. Figure 5(c)
presents the one-term approximation of the near-tip stress field for
a large value of n (n=1000). In that case, which can be considered
as approaching the “perfectly plastic situation,” the first two
asymptotic exponents p and g, are very close to each other (p=
—-0.999 and g,=-0.991). The corresponding angular functions are
then almost identical and there is little difference between the one-
and two-term approximations. Due to the more singular nature of
the near-tip solution, the region of stress concentration is smaller
for n=1000 than for n=8, and the near-tip stress fields are char-
acterized by the appearance of sectors, characteristic of perfectly
plastic solutions.
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Fig. 5 Contour plot of the two near-tip stress components
(normalized by Gp) in a circular domain of radius equal to 0.8rp
and centered at the crack tip. The top half of each circle corre-
sponds to o, (which is odd in 6) and the bottom half to o, (even
in ). (a) and (b), respectively, correspond to the one- and two-
term approximations for the homogeneous case with n=8,
while (c) shows the one-term solution for n=1000.

Stress contours obtained from the FGM two-term solution are
shown in Fig. 6 for n=8, ¢=0.4 and for three values of y (y=
-1, 0.1, and 1). Note that a negative value of y corresponds to
“radial softening,” i.e., to the case where the modulus G(r) is
maximum at the crack tip and decreases radially. As mentioned
earlier, unlike the homogenous case, the solution for the second
term is completely determined in the FGM case, as both the ex-
ponent g and the ratio of amplification factor B/A are known. The
only undetermined quantity in the FGM case is thus the amplitude
A, which is related to the J-integral. This is the sole quantity
controlling the extent of plasticity, since rp is proportional to
J/a,. Therefore, the competition between the “load-induced
length scale” rp and “material gradient length scale” rg, quantified
by the parameter y defined by Eq. (27), is clearly visible in Fig. 6.
For small values of 7 (i.e., when the material gradient is small),
the near-tip solution is very similar to that obtained with the one-
term approximation (and shown with the same gray scale scheme
as in Fig. 5(a)). For steeper positive (Fig. 6(c)) and negative (Fig.
6(a)) gradients, the region of dominance of the one-term approxi-
mation is reduced.

This competition is further illustrated in Fig. 7, which presents
on a log—log plot of the radial variation of o directly ahead of the
crack (i.e., for #=0) for the one- and two-term homogeneous so-
lutions, and for five values of vy for the graded material. All curves
have been obtained for n=8 and the FGM solution use ¢=0.4 (i.e.,
all FGM solutions share the same values of the asymptotic expo-
nents p and gq). As expected, very little deviation from the one-
term approximation is observed in the homogeneous case (for
which B/A has been chosen as 0.3), but also in the FGM case with
y=0.1. As v increases, the material heterogeneity reduces the re-
gion of dominance of the one-term asymptotic solution. It is in-
teresting to note that, for FGMs with a positive radial gradient
(i.e., for y>0), the stress distribution described by the first two
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Fig. 6 Stress contour plots (similar to those shown in Figs. 5)
obtained with the two-term approximation for the FGM case
with n=8, ¢=0.4, and y=-1 (a), y=0.1 (b), and y=1 (c).

asymptotic terms does not decay monotonically from the crack
tip, but reaches a local minimum. The situation is of course very
different for radially varying FGMs with a negative material gra-
dient (<< 0): the material heterogeneity reinforces the rapid decay
of the stress field away from the crack tip. Physically, this can be
rationalized by recognizing the natural tendency of a crack tip to
produce a stress field amplifying stresses in the near-tip region but
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Fig. 7 Radial variation of o, ahead of the crack, showing the
effect of y on the region of dominance of the most singular
term (denoted by the solid curve). For comparison, the two-
term approximation is also shown in the homogeneous case
(obtained for B/A=0.3). The curves have been obtained for n
=8 and, in the FGM case, c=0.4.
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decaying at larger distances away from the tip. The local stresses,
however, are also controlled by the local stiffness of the material.
Therefore, in a FGM with a positive radial gradient (y>0), al-
though the crack tip stresses tend to decay as we move away from
the crack, the material is getting stiffer, which in turn raises the
stress level. In the immediate vicinity of the crack tip, the leading
order is dominant and the stresses decay as we move away. How-
ever, when the second-order term becomes important, the material
stiffening effect is increasingly felt and the stress increases as we
continue moving away from the tip. For an FGM with a negative
radial gradient (y<<0), the radially decreasing material stiffness
accelerates the natural decay rate of the stresses induced by the
presence of the crack. Both these effects are clearly seen in Fig. 7.

6 Conclusions

The first two terms of an asymptotic approximation of the near-
tip displacement and stress fields have been obtained for a mode 3
crack embedded in a radially varying plastic FGM described by
the Ramberg—Osgood power law. Taking advantage of the math-
ematical simplicity of the solution we draw the following conclu-
sions:

(1) As is the case in the elastic problem, the material property
gradient does not affect the form of the leading term of the
near-tip approximation, but may affect the higher-order
terms.

(2) A separable solution up to the second term in the FGM case
is possible when the material stiffness parameter G defined
by Eq. (7) follows a power law variation of the form G
=Gy+G (r/rp), with Gy>0 and ¢>0. In this case, the
exponent g of the second asymptotic term is simply given
by g=p+c, where p is the exponent of the first (most sin-
gular) term.

(3) The existence of a second asymptotic term specific to the
FGM case depends on the value of the material exponent c:
if the resulting value of ¢ is less than that obtained for the
second term in the homogeneous case (g;,), the material
gradient will affect the two-term asymptotic solution. Oth-
erwise, it might only affect terms of third order or higher.

(4) Unlike in the homogeneous situation for which the ampli-
tude of all asymptotic expansion terms is left undetermined
by the asymptotic analysis, the amplitude of the second
term in the FGM case is fully determined by the value of
the first one.

(5) The competition between the two length scales characteriz-
ing the fracture problem (the plastic zone size and the ma-
terial gradient length scale) has been quantified in terms of
a single parameter 7y introduced in Eq. (27) that incorpo-
rates the combined effect of the nature, amplitude, and ex-

Journal of Applied Mechanics

tent of the material gradient. The value of this parameter
strongly affects the size of the region of dominance associ-
ated with the most singular asymptotic term, and the nature
of the development of the stresses and displacements out-
side this region of dominance when the second term be-
comes significant.

How these conclusions transfer to more complex material
property gradients and/or loading modes is currently under
investigation.
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Asymptotics for the Characteristic
Roots of Delayed Dynamic
Systems

Delayed dynamical systems appear in many areas of science and engineering. Analysis of
general nonlinear delayed systems often begins with the linearized delay differential
equation (DDE). The study of these linearized constant coefficient DDEs involves tran-
scendental characteristic equations, which have infinitely many complex roots not obtain-
able in closed form. Here, after motivating our study with a well-known delayed dynami-
cal system model for tool vibrations in metal cutting, we obtain asymptotic expressions
for the large characteristic roots of several delayed systems. These include first- and
second-order DDEs with single delays, and a first-order DDE with distributed as well as
multiple incommensurate delays. For reasonable magnitudes of the coefficients of the
DDEs, the approximations in each case are very good. Subsequently, a fourth delayed
system involving coefficients of disparate magnitude is analyzed using an alternative
asymptotic strategy. Finally, the large root asymptotics are complemented with calcula-

tions using Padé approximants to find all the roots of these systems.
[DOI: 10.1115/1.1875492]

1 Introduction

Delay differential equations (DDEs) are infinite-dimensional
systems which find application in manufacturing processes, con-
trol systems, biology, economics, chemical kinetics, and other ar-
eas [1-9]. The simplest linear DDEs have constant coefficients, as
in

X(1) = ax(t) + Bx(t - A), (1)

where A > 0. The solution of Eq. (1) is a sum of terms of the form
eM [10-14], where \ satisfies

A=a+ Be ™.

This equation determines the infinitely many characteristic roots
of the DDE, impossible to find in closed form. If all these roots
have negative real parts, then all solutions decay to zero and the
system is stable. A root with a positive real part implies an expo-
nentially growing solution (system unstable).

In this paper, we find all the characteristic roots of some linear
constant coefficient DDEs.

The study of linear constant coefficient DDEs is important
since analysis of general nonlinear DDEs often begins with a pre-
liminary study of the linearized DDE (e.g., [7]). Analysts often
seek conditions under which the system is stable. This search is
nontrivial because there are infinitely many characteristic roots
not obtainable in closed form. Significant stability results have,
nevertheless, been obtained (e.g., chap. 10 in [10], Theorems 4.1—
4.3 in Sec. 11.4, Theorems 5.1-5.3 in Sec. 11.5 in [12], Sec. 1.2
and 1.4 in [13], and chap. 2 in [14], etc.; see also [15,16]). The
above references contain results pertaining to either all roots hav-
ing negative real parts, or specific parameter values for which a
pure imaginary pair exists. It is also possible to count the number
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of roots in the right half of the complex plane [14,17].

Whether the system is stable or not, it is of further interest to
find out where the characteristic roots lie. The geometrical distri-
bution of these characteristic roots is important in proving theo-
rems on series expansion and asymptotic behavior of solutions;
see Bellman and Cooke [10]. Results in similar directions have
also been obtained for specific equations by others (e.g., Sec. 1.4
of [12], Sec. 11.3 of [18], etc.). These theorems show for certain
DDEs, e.g., that there are finitely many roots in any vertical or
horizontal strip in the complex plane.

Numerical algorithms for finding the characteristic roots of lin-
ear constant coefficient DDEs have been given in [19,20]. How-
ever, they are computationaly efficient for finding the first few
roots only. Sandquist and Rogers [21] have sought the character-
istic roots for scalar linear first-order DDEs; they consider a single
delay, and graphically determine the roots of a transcendental
equation in one variable.

As mentioned above, in this work we aim to determine all the
roots of some linear constant coefficient DDEs. Our approach is
based on asymptotic calculations for the large roots, a Padé ap-
proximant for a small number of roots that are not large, and
numerics (the Newton-Raphson method) to refine these roots. Al-
ternative asymptotics are also used for the not very large roots of
a DDE involving coefficients of disparate magnitude.

It may be noted that Bellman and Cooke [10] have obtained
leading order asymptotics for characteristic roots of a class of
DDEs with multiple commensurate delays. In contrast, here we
find correction terms in the expansions, giving very accurate esti-
mates. Moreover, incommensurate delays are included in our
study. Finally, DDEs with coefficients of disparate magnitude are
considered as well.

2 Mechanical System With Delay

A schematic of the turning process in three-dimensional (3D)
space, and a 2D projection of the same on the x-y plane, are
shown in Fig. 1. The derivation below is that of Stépan [1]. Intro-
duce a “long” discrete time delay 71 =2/}, where () is the speed
of workpiece rotation in rad/s. This is the time period of one
revolution. Also introduce a “short” continuous delay h=2L/QD,
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Fig. 1

Simple model for tool vibrations

where L is the length of the tool-chip contact region and D is the
diameter of the workpiece. This is the time during which the tool
and the chip are in contact.

The linear model of regenerative machine tool vibration in the x
direction, considering both the long discrete and the short continu-
ous delays, is given by Stépan [1] as
0

¥(t) + 2hw, i (1) + wlx(1) + % J W(O)x(t + 6)do

—h

ke [
- f W(r, + 0)x(t + 6)do=0, 2)
m -7=h

where w,= \e’k/7 is the natural angular frequency of the tool, ¥
=c/2\mk is the damping ratio, k; is the slope of the F, versus f
curve? at f=f,, and W(6) with 6 e [~h,0], is the stress distribution
function over the tool-chip contact region.

When W(6)=45(6), there is only the long discrete delay 7, and
on suitable rescaling of time, Stépan obtains

(1) + 24 (2) + (1 + p)x(t) = px(1 = 7) =0, 3)

where p=k1/mw2, and 7=w,7,. Equation (3) is also derived in

[7]. If 7=1, for simplicity, we have
X422+ (1 +p)x—px(t=1)=0. (4)

We will study the characteristic roots of Eq. (4) in detail in Sec. 4.

When W(6) # &(0) in Eq. (2), we have an integro-DDE which
represents a distributed delay effect.

If W(6) is approximated by more than one Dirac-delta function,
e.g., W(0)=48(0)+5(0+h), we get a delayed system with multiple
delays which could be incommensurate. Note that systems with
incommensurate delays are not amenable to analysis using
Pontryagin’s criteria [22] (see also [12]). But we will consider
such systems below. Note that incommensurate delays can also
arise in other applications, e.g., a system where a microphone
picks up signals from two unequally distant speakers and gives it
as a feedback to the amplifier driving them.

3 Preliminary Example
We begin with the equation (e.g., [12,13])

X+ax(t=1)=0. (5)
Assuming x(1)=C ¢M as usual, we obtain
N+ae™=0. (6)

Letting A=a+i B and separating real and imaginary parts, we
obtain

a+ae“os B=0, (7)

B—a e “in B=0. (8)
, and that

We assume «a is nonzero and O(1) compared to |\
=0 (-p gives another solution).

Here [ is the chip thickness, and F, is the x component of the cutting force.
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Fig. 2 Roots of Eq. (6) for a=1

PROPOSITION 1. In the large roots of Eq. (6), <0 and «
=0O(In B).

Proof. If, in the large roots, a is not large [i.e., is bounded or
O(1)] then Eq. (8) gives the contradiction B=0O(1). If « is large
and positive, then Eq. (7) gives the contradictory a=0(1). There-
fore, « is large and negative. Then Eq. (7) implies, in the
asymptotic limit, that cos 8=0, which gives sin B=+1. By Eq. (8)
we can show that, for integer N> 1

a~—ln(£) andﬁ~<2N+M>ﬂ'. |
lal 2

Roots found numerically by the Newton-Raphson method,
along with the asymptotic approximations themselves, agree well
in Fig. 2.

4 Second-Order DDE

We now consider the equation derived in Sec. 2,

X(@) + 24 (@) + (1 + p)x(t) = p x(1=1) =0, ©)

For this equation, for small p, all characteristic roots lie in the left
half plane [7]. Here, we develop large-root asymptotics for p non-
zero and finite. Note that second-order delayed systems have long
been of interest due to mechanical applications [15,16,23].

In Eq. (9), we let x=C eV, set A\=a+i 3, and separate real and
imaginary parts to get

=P +2pa+1+p—pecos B=0, (10)

2aB+2¢YB+p e “sin B=0. (11)

We now eliminate large regions of the complex plane from our
consideration. We divide the upper half plane qualitatively into the
regions shown in Fig. 3, and investigate them one by one. The
lower half plane is symmetrical, hence excluded. We will elimi-

A Region 3
lof << Bl

Region 2
(o, Bcomparable)

Region 4
(o, Bcomparable)

Asymptotics not valid

1Bl << Jail
- Region 5

1Bl<<la
Region 1 - O

Fig. 3 Regions considered in the complex plane
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nate regions not containing any roots. In the shaded area roots are
not large, and our asymptotics do not hold.

PROPOSITION 2. For Eq. (4), large roots have large a and occur
only in the left half of region 3, Fig. 3.

Proof. If ais O(1) in the large roots, it leaves an unbalanced /3
in Eq. (10). So « is large.

First consider regions 1 and 2, as well as the right half of region
3. Since a>0 here, 0<e™*< 1. In Eq. (10), since large @ means
o> a, we balance the two largest terms to get & ~ 8. Using this
in Eq. (11), we find nothing can balance the large term 2af3.

Next, consider regions 4 and 5. Here, e~ is exponentially large
compared to both & and B as well as algebraic powers thereof.
Equations (10) and (11) then lead to the contradictory

cos’B+sin’B<1.

By elimination, only the left half of region 3 contains large
roots. |

PROPOSITION 3. Equations (10) and (11) are satisfied by a=
-2 1n B+In|p|+o(1) and B=[2N+(1+sgn(p))/2]m+o(1), for inte-
ger N>1.

Proof. By proposition 2, 8>|a|>1 for the large roots. We
substitute @=gu In B+z in Egs. (10) and (11), with the assumption
that |z|<In B, to get

w2(In B>+ 2u(z+ p)In B+ 22— B*+ 24z + 1 +p—p B He“cos B
=0, (12)

2uBln B+2zB+2¢B+p B e *sin B=0. (13)
In Eq. (12), B2 is asymptotically bigger than all other terms [in-
cluding u?(In B)>~ a?] except possibly p B*e %cos B, so these
two terms must balance each other. Note, p # 0. This gives

B e “cos(B) = O(B).
Taking absolute values and then logarithms
—uln B+Injcos 8| ~21n B,

where we have dropped z since it is smaller than In 8.
In the above, we could conceivably have 0 <|cos 8| <1, and in
fact small enough that In|cos B|=O(In B). This, however, requires
B e™> 82 which leaves a large term B *e %sin B8 (with sin 8
~ +1) unbalanced in Eq. (13). Therefore, to balance terms, we

must let w=-2. Then Egs. (12) and (13), on dividing by 8> and
dropping smaller terms, give

(14)

pecosB~—-1, (15)

p e %sin B=o(1). (16)
Since pe~?=0 violates Eq. (15), we must have sin 8=0(1) from
Eq. (16), whence cos B~ = 1. Consequently, pe™*~ F 1. The re-
sult follows. |
We can now develop formal series as follows (assuming p > 0;
the other case is analogous). Having balanced B8 terms, we still
retain O(B) terms, which are relatively smaller by a factor of
O(1/N). Accordingly, we write (note the slightly different form
for a, now dependent explicitly on N)

Bi . B
B=(2N+])W+N+ﬁ+“.’ (17)
a @
a=—21n[(2N+1)7r]+lnp+—N+N—2+~--. (18)

Substituting into Egs. (12) and (13), expanding in series, collect-
ing terms (using Maple 6 (Windows)), and solving for the unknown
coefficients, we obtain

1=

2In2N7) ——Inp

o
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Fig. 4 Roots of Eq. (4) with #=0.1 and p=2

'
L)

B 2In(2N7w) - y—Inp-2

21 ’

2
a; =0,

1
azz—m(—l+81n771nN+81n771n2+81n21nN

—4In@2Nm)Inp -4 In2N7) +2Inp + 24 Inp + 247 — p
+44).

While collecting terms above, we have treated In N as O(1) com-
pared to N.

The above approximations agree well with roots obtained using
Newton-Raphson; see Fig. 4. There are just three relatively small
roots (one real, one complex pair) not captured by the asymptot-
ics; those are not plotted here.

5 DDE With Multiple and Distributed Delays
Consider
1
X(t) + ax(t) + ax(t — 1/\5) +asx(t—1) + a4f x(t—s)cos s ds
0
=0, (19)

with a3 # 0. The characteristic equation is (we multiply by A\?+1
to simplify the expression, but introduce spurious roots at A==+i
which we ignore)

—aze™IN cos(1) + age™sin(1) + agh + aze™IN + ae™
+ a2e("”‘§))\2 + a2e("”“§) +a N +a + N +1=0.

Substituting A=a+i and separating real and imaginary parts, we
get

—ase”“acos 1 cos B—ase”*Bcos 1sin B+ ase”*sin 1 cos B
+aga— aze” B cos B+ 2aze % Bsin B+ aze”“a’ cos B
5 =
+aze “cos B+ 2a,e” 2o Bsin(B/\2)
N2 2 [5 2 2 [y
+ a,e” " a” cos(BIN2) — ae™ "B cos(B/\2)
+ a2e—a/\§

:0,

[ 2 2 3 2
cos(BN2)+aja" —a | +a+a -3a B+«
(20)
ase “acos 1sin B—aye B cos 1 cos B—aze sin 1 sin B+ ayfB
— aze™%a? sin B+ 2ay¢™%a Bcos B+ aze B sin B

— aze™sin B+ 2a,e"" 2 Bcos(B/\2)
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—a,e” 22 sin(B/ \5) +a,e” “5/32 sin(B/ \5)

— a2 sin(BN2) + 2a,a B+328- B+ B=0.  (21)

We again eliminate regions of the complex plane from consider-
ation.

LEMMA 1. In that portion of region 3 where B> |a|>1, Egs.
(20) and (21) simplify to

2aze~aBsin B - ase" B2 cos B+ 2ae "o sin(B/2)

— a2 cos(BIN2) - 38 = DST, (22)
and
2aze~aB cos B+ ase~ B sin B+ 2a,e "2 a8 cos(B/\2)
+aye= 28 sin(BI\2) — B2 = DST, (23)

where DST stands for “demonstrably smaller terms.”
Proof. Consider first the coefficients of ¢™“cos 8 among the
terms appearing in Eq. (20), i.e.,
- aquacos 1, -af, aza,

aysinl, and as.

The largest of these is —a3/3%, so we drop the other four. Similarly,
of the two terms containing e™* _sin B, one is dropped; among
terms containing e~*"2 cos(8/v2), all but one are dropped;
among the rest excluding the term with e*\?sin(8/12), only
3aB? needs to be retained. Similar simplifications are made for
Eq. (21) (details omitted). |

PROPOSITION 4. The large roots of Egs. (20) and (21) have large
a and lie only in the left half of region 3, Fig. 3.

Proof. For large roots, a=O(1) leaves 8° unbalanced in Eq.
(21). So a is large.

We first drop regions 1 and 2 from our consideration, as fol-
lows. In these regions, terms containing e~* can be dropped, being
smaller than other terms, giving

aga+a®—a P +a + o -3af+a=o(1), (24)

a,B+2a,aB+32B- B+ B=0(1). (25)

In region 1, the largest term o is unbalanced in Eq. (24). In

region 2, the leading terms in Egs. (24) and (25) give o’ ~3a3>
and 3a?B~ B3, which have no nonzero solutions.

Now we drop the right half of region 3, as follows. By Lemma
1, Egs. (22) and (23) hold in this region. Since &> 0 in the right
half, we have 0 <e™®<e~*“2< 1. This leaves the largest term /3
unbalanced in Eq. (23).

We next consider regions 4 and 5. Here, <0 (and large), so
e~ *> ¢ 2 which in turn is much greater than both a and S as
well as algebraic powers thereof. Hence, retaining only the terms
containing ¢™® in Egs. (20) and (21), we get

aysin 1 cos B—ayacos 1 cos B—ayBcos 1 sin B+ aza’ cos B
+2aza sin B— a3 8% cos B+ a; cos B=DST, (26)
and
ayacos 1 sin B—ayBcos 1 cos B—ay sin 1 sin B—aza’ sin B
+2aza cos B+ as B sin B—ay sin B=DST. (27)

In region 4, the quadratic terms in « and B dominate in Egs. (26)
and (27), giving (since a3 # 0)

— o’ sin B+ 2afB cos B+ 3 sin B=DST, (28)

o?cos B+2apsin B— Bicos B=DST. (29)

Multiplying Eq. (28) with sin B, Eq. (29) with cos 3, and subtract-
ing, we find
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B* - a*=DST,

which means 8~ a. However, that in turn leads to the contradic-
tory

cos B=o(1)

cos’ B+sin’ B<1.
(30)

In region 5, o? dominates in Eqs. (28) and (29), giving the same
contradiction as Eq. (30). Hence, we conclude that asymptotically
large roots lie only in the left half of region 3. |
PROPOSITION 5. Equations (20) and (21) are satisfied by a=
—In B+In|as|+o(1) and B=(2N+sgn(as)/2)m+o(1).
Proof. By Proposition 4 and Lemma 1, we have the simplified
equations, Egs. (22) and (23) (reproduced below).

and sinB=o0(1), i.e.,

2aze~aB sin B— ase~"B2cos B+ 2are~ 2 sin(B/2)

— a2 Beos(BI\2) - 3a8? = DST, (31)

and
2ase™%aB cos B+ aze*Bsin B+ 2a2e""/‘ia,3 cos(,B/\c‘E)

+ a2 B%sin(BI\2) - B = DST. (32)

Here a<<0 and |a|>1 so that e ®>¢ “V?>1. In Eq. (31),
e~%f%cos B is asymptotically larger than any other term unless
cos B=o0(1), whence sin S~ x1. Using this in Eq. (32), the two
largest terms have magnitudes e~%8% and 3. This gives

aze “f*sin B— B =DST.
For a3;>0, we require sin S~ 1 which leads to

B=02N+1/2)m+0(1) and a=-InB+Inas+o(l),

(33)
while for a; <0, we require sin S~—1 and hence
B=02N-1/2)m+0(1) and a=-1InB+In|as]+o(1),

for large integer N. |
We now find two correction terms in a formal series. The pro-
cedure is somewhat more complicated than before.
The second largest terms in Egs. (22) and (23) are of

O(B17+2)) compared to B°. This suggests a formal series in
powers of N-=1\2) However, there are terms of O(8"),O(872),
etc., whose powers are not integer multiples of 1-1/ y’Z, and so

the formal series should have mixed powers of N-1=1\2) and N-1.
We therefore anticipate a series of the form

Bi B ... Bu Bu,

NU-112) + A20-112) '

B=0C2N+1/2)m+

+ mixed powers.

Note, however, that the first mixed power is of the form

1 1 1
_<_

Nl-l/\i X N

s

and so if we retain only the first two small corrections, then we
have the somewhat simpler expression

Bi B
N(l—l/\‘i) Nz(l-l/\i)

B=02N+1/12)m+ +h.o.t. (34)

where “h.o.t.” stands for higher_ order terms. Note that 1/ \_2
~0.7 and so (roughly) N-0-1"2=nN-03 Similarly, N-2(1-1/\2)
~N00> N-I> “mixed powers.”

For analytical convenience, we take the leading order solution
for a as a=-In B+z, where z<<In 8 and express the correction z
in a series as
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z=In(az) + +h.o.t. (35)

<] + 2
N(l—]/\‘E) N2(]—1/\“§)

Substituting @ in Egs. (22) and (23) and dividing throughout by
B3, we get

1
— 1+ aze~%sin(B) +a25in( i) = /\25-(1 1/\2)+(’)( r}f) 0,
\J

(36)

3 _IN3 In g
2IN2 —-(1-1/42) O(_)zo
) O

(37)
Substituting Egs. (34) and (35) in Egs. (36) and (37), followed by
expanding and collecting terms finally gives

B, = 2(—2+\E)/27T(—2+\§)/2a2a31/\ECOS( (412\] %1) 77) ’
N

‘E‘ﬂ|m

ase~“cos(B) + acos (

2 =20 2D g1/\2 <(4N+ 1) )
2V2

== 8:72(2\277 a2a3‘2(1 \2)c s(w\i—gl)fr))

Figure 5 shows some of the characteristic roots of Eq. (19)
obtained numerically using the Newton-Raphson method along
with the asymptotic approximations, which are in good agree-
ment.

Remark 1. The smaller characteristic roots of DDEs can be
found using Padé approximants ([24,25]). These, along with the
asymptotics above, can give all the roots. The procedure requires
arbitrary precision arithmetic (in, e.g., MAPLE). See the Appendix.
These can be found using the Galerkin projection technique [26].

6 Asymptotics on Coefficients

In the above DDEs the term with the largest delay essentially
determined the large roots. For DDEs with multiple delays, how-
ever, if the coefficients of delayed terms have disparate magni-

30ur calculations were done using MAPLE 6 (Windows), which, for these irrational
powers, needs a little patience. We found it useful to do the expansion one term at a
time. For each term, we divided by the (known) largest surviving power of N, and
then asked for the limit as N — .
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tudes, then the above asymptotics may only begin to hold for
extremely large roots. In such cases, we could develop alternative
asymptotic expansions. We present one example

x(t- 1/\5)

x(t)+f+ax(t—l)=0, (38)

where 0 <e<1. Note that this is a special case of Eq. (19) with
a,=1/€,a3=a and a;=a,=0. Substituting N=a+iB and separat-
ing real and imaginary parts, we get

e ‘Ecos( B/ \E)
& COSPING

+ae %cos B=0, (39)
€
—a//\i : J E
g SN e g0, (40)
€

Remark 2. The above two equations each have three terms.
However, there are regimes of root magnitudes for which, in each
equation, two of the terms are much bigger than the third. Our
analytical search for roots will focus on these regimes. In what
follows, we adopt the following convention. If the mth and nth
terms, with m=1,2,3 and n=1,2,3, are negligible compared to the
other terms in Egs. (39) and (40), respectively, then we refer to it

s “Case (m,n).” The large root asymptotics developed in the
previous section correspond to Case (2,2).

Remark 3. The leading order solution of Eq. (19) given by Eq.
(33) also represents roots of Eq. (38), under Case (2,2). Substitut-
ing Eq. (33) in Eq. (40), the first and third terms turn out to be of
O(N) while the second term is of O(NY\2/¢€). Hence, the second
term is negligible for

N> N"2e je, N> @D,

Alternatively, the asymptotic expressions of Egs. (34) and (35),
for the roots of Eq. (19), are based on the correction term being
o(1). For Eq. (38), viewed as a special case of Eq. (19) (with a,
=1/e), substitution of B; found in Sec. 5 in the series solution for
B. i.e., Eq. (34) gives the first correction term to be

2(72+ \“‘5)/2 77(72+ \“E)/2a71/\§ (4N + l)
6N(1—1/\‘§) cos 2 \}’E ™.

For the above to be o(1), we require N> e 2*2) matching the
above.

The asymptotics developed below are therefore for N smaller
than the above estimate. How much smaller is a somewhat tricky
issue as discussed later.

By remark 2, our analytical search for the roots will concentrate
on regimes where two of the three terms in each equation, i.e.,
Egs. (39) and (40), are much larger than the third one. Accord-
ingly we have nine different possibilities, one of which, Case (2,
2), has been dealt with in the previous section. Here, we check the
remaining possibilities one by one for the existence of roots and
obtain expressions for them.

PROPOSITION 6. Case (1,1) yields a set of solutions for Egs. (39)
and (40).

Proof. Equations (39) and (40) simplify to

~ah2cos(BIN2
—('B ¥2) —ae “cos B+ ST, (41)
€
—a/\‘z . / “‘E
CTSIBND) _asin g+ ST, (42)

€

where “ST” stands for an asymptotically smaller term. Squaring
Egs. (41) and (42) and adding, in the asymptotic limit we get

_\“‘50’
¢ 2 2a

(43)

Hence, to leading order we have
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a=02+ \E)ln(ea). (44)

Substituting « in Egs. (41) and (42) and rearranging, we get in the
asymptotic limit

a—(1+\§) E_(2+\§)[COS(B/\E) +cos IB] =0,

a"(l+“5)e"(2+“5)[sin(3/\r’5) +sin B] =0.

Again squaring and adding we get

2(1_(14—\5)6_(24-\5) 1 +COS( B .—) =0
2+

which requires cos(B8/2+ \"‘5):—1, giving

B=0CN+1)(2+\2)m. (45)

Equations (44) and (45) give solutions for Egs. (39) and (40). H

We further investigate these roots for small € and large N as
follows. Substituting Egs. (44) and (45) in Eq. (40), we note that
the first term is of O(N) while the second and the third term are of
O(€®*2)). Hence, the assumption that the first term is negligible
for Case (1,1) is valid as long as N< e‘(z"\“cz)._Note that this is
complementary to Case (2, 2) where N> e 2*'?) (by remark 3).

We proceed to a correction term. We add corrections 3; and «;
to the leading order solutions for 8 and «, i.e., in Egs. (44) and
(45), respectively. We substitute « and B in Egs. (39) and (40),
expand in a Taylor series about a;=£,=0, drop quadratic and
higher order terms, and solve for 8, and «; to get

@M% (@aN + 2)meos[ 2+ V2)@N + D] + 2 In(ae)sin[ (2 +V2) 2N + Dar]}

Bi

=
—3+242

a;

Since we are interested in N< e 22 for this case we find, self-
consistently, that 8;=0(1) and a;=o0(1). This concludes Case
(1,1).

Remark 4. In the above, we established the range of B (or
equivalently N) over which the asymptotic expressions hold, i.e.,
B< €2 In what follows, such sharp estimates on 8 may not
always be easily obtainable. Sometimes, for simplicity, we will fix
B at some e-independent range of magnitudes and take the limit as
€— 0. Eventually, numerics will bear out the final analytical ap-
proximations.

LEMMA 2. If r is an irrational number and either sin =0 or
cos 6=0, then sin(r6) # 0 and cos(r6) # 0.

Proof. sin =0 requires #=n1r, for some integer n. However,
sin(r6) =0 requires r@=mar, for some integer m. Simultaneous sat-
isfaction of both the above requirements imply, contradictorily,
that r=m/n. Similar contradictions arise for the other cases. W

PROPOSITION 7. Case (2,1) can be eliminated.

Proof. From Egs. (39) and (40), we have

a=—-ae %os B+ ST, (46)
—a/\2 [
e sin(B/V2
TSI | ain B+ST. (47)
€
Squaring and adding, we get in the asymptotic limit
e~ 2asin2(B\2
¢ sin (B12) +d=a’e™. (48)

e

There are three possibilities now: a>1, a=0O(1), and a<-1.

1. If a> 1, the right-hand side (RHS) of Eq. (48), i.e., a%e™>“
=o0(1). However, in the LHS, o?>1 while the first term is
positive, giving a contradiction.

2. If @a=0O(1), the first term remains unbalanced in Eq. (48)
unless sin’(8/ Va)f 1. However, Case (2,1) implies for Eq.
(39) that cos*(B/ V2)<1 as well, giving a contradiction be-
cause sin?(.)+cos?(.)=1.

3. If a<<—1, then a®<<e¢™2® and Eq. (48) simplifies to
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€% H@N + 2)wsin 2 +12) 2N+ ) 7] - 2 In(ae)eos| (2 +V2) N + 1) ]}
-3+2\2 '

e osin’(B1\2)

62

Also, Case (2,1) implies for Eq. (39) that cos(B/ \2)
=0(1), when sin*(8/y2)~ 1. In that case, Eq. (49) simpli-
fies to Eq. (43) which has Eq. (44) as the leading order
solution for a. Substituting Eq. (44) for « in Eq. (47), we
require in the asymptotic limit

2442 ) (2-\5 )—o
4 B |cos 2 B1=0,

which contradicts our Prior conclusion that cos(B/ \5):0
in the asymptotic limit”" (by Lemma 2).

a’e™>* + ST. (49)

sin(,B/\c“E) +sin 8=2 sin(

Thus, Case (2,1) gives no roots. [ |
PROPOSITION 8. Cases (3,1), (1,2), and (3,2) can also be elimi-
nated.
Proof. The proof resembles that of Proposition 7 and is not
given here to save space. |
PROPOSITION 9. The three Cases (m,3) m=1, 2, 3 lead to one
set of solutions for Egs. (39) and (40).
Proof.

1. For Case (1,3), from Egs. (39) and (40) we get

e “chos( Bl \5)

€

=—ae “cos B+ ST, (50)

e “Esin( B/ \E)
_—

€

B= ST. (51)
Note that Case (m,3) implies that 8> ae~%|sin 8|. Accord-

ingly, we have two subcases, in the asymptotic limit, viz.,
sin 8=0 and sin B#0.

“Note that we have considered B fixed as e— 0. An argument allowing 3 to grow

as €e—0 can be developed, but is trickier and avoided here.
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Fig. 6 Roots of Eqgs. (39) and (40) for a=1 and €=0.05. Plus
signs: Newton-Raphson. Circles: asymptotic, Case (1,1). Tri-
angles: asymptotic, Case (m,3). Rectangles: asymptotic, Case
(2,2).

e If sin 8=0 in the asymptotic limit, we have cos f==1. In
that case, solving Eq. (50) for a, we get

a=02+ \E)lﬂ(L,—) .
|cos(B/V2)]

Substituting the above in Eq. (51), we will require

212012 B = sin(BN2)cos 2 (B 2).

In the asymptotic limit as €e—0, we will require either
sin(B/ \E)zO or cos(B/ \E)zO which contradicts sin 8=0
(by lemma 2).

e If sin B# 0 in the asymptotic limit, we have 8> ae™*. Also,
from Eq. (51), we have e="2/e= B> ae™@. Hence, for bal-
ance in Eq. (50), we require cos(8/v2)=0 (in the
asymptotic limit), giving

B=(C2N+1/2)\2m+0(1). (52)

Substituting the above for B in Eq. (51) and solving for «,

we get
a=—\2 In[e@N + 1/2)\27] + o(1). (53)
This concludes Case (1, 3).
2. For Case (2,3), we have
a=-ae %os B+ ST, (54)
po CSn(EN2) D) o (55)

€

Again B> ae %sin 8

, giving two subcases as before.

e If sin =0, we have cos B=+1 and Eq. (54) reduces, in the
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Table 1 Root improves with precision of arithmetic
Digits used 6 8 10
First root 1.0452 1.044 639 8 1.044 64353

asymptotic limit, to

axae “=0.

The above has at most one solution for a which, in turn, is
O(1). In that case, e=®2=0(1) and Case (2,3) requires
cos(B/ VE):O contradicting sin 8=0.

e If sin #0 in the asymptotic limit, we have 8> ae™®. Also
from Eq. (55), we have e\2/e= 3. Now, Case (2,n) re-
quires [e=*2cos(B/ \E)]/ e<ae~*< . This is possible only
when cos(B/ \E):O giving Egs. (52) and (53) as the solu-
tions again.

3. For Case (3,3), we get from Egs. (39) and (40)
e “Ecos( B/ \E)

a=— ————" 18T,
€

(56)

e ‘Esin( B/ \6)
—_—

€

B= ST. (57)

In the asymptotic limit, Egs. (56) and (57) are the same as
Eqgs. (7) and (8) with a=1/€ and the delay being 1/ \5 in-
stead of 1. From Proposition 1, we get the same expressions
for a and B as given in Egs. (52) and (53).

Thus, all cases (m,3),m=1, 2, 3 give the same solutions given
by Egs. (52) and (53). [ |

Remark 5. All three cases (m,3) lead to the same solution set. A
finer analysis of small terms might tell them apart. Note also that
these solutions rest on 8> 1, which implies “large” roots (though
not larger than that allowed by Remark 4). As will be seen in
numerics, all but a small number of roots are in fact captured
accurately.

Remark 6. In the above, roots in different magnitude regimes
were captured by different scalings of the nominally small/large
expansion terms. Equations (52) and (53) apply for N somewhat
large, but not larger than e 2*¥2), Moreover, there € itself is small.
Elsewhere, we have held N fixed as e— 0. Below, to obtain cor-
rection terms to the leading ordgr solutions, we set e=A/N!=1\2,
where A=0(1) since N< e @2 However, now A will be held
constant while we consider asymptotics for large N. These differ-
ent scalings are motivated by mathematical convenience alone,
always keeping in mind that we are finally interested in some
finite nonzero values of € and N, and it matters little how we get
there. In final justification of these ideas, numerics and approxi-
mations will match below.

For finding a correction term, we first scale € as mentioned in
Remgrk 6, then sul)stitute B=(2N+1/ 2)77V5+ By and «
=—\2In[e(2N+1/2)7\2]+«; in Egs. (39) and (40), expand in a
Taylor series about ;= =0 until first order, solve for a; and B,
retain the largest power of N (a key step in simplifying very long
expressions), and reinsert A=eN'""\2 to finally get
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21930271+ 2 62 cos[ (2N + 1/2)m\2]

B

4N 4 232 @22 22N 4 9202+ 202 sin[ (2N + 1/2) 2]

21+3/\57Tl+\56\‘§a sin((2N+ 1/2),”.\5) + 23\5772\562\‘5a2N\‘§—1

ay

Figure 6 shows the converged roots obtained from Newton-
Raphson iterations, each starting from a different initial point on a
large, uniform grid (exhaustive search); as well as the above ana-
Iytical estimates. Agreement is good except for a single root near
the origin.

7 Conclusions

We have obtained asymptotic approximations for the roots of
the characteristic equations of some linear DDEs with constant
coefficients. The term with the largest delay dominates in the
asymptotic expansions for the large roots. A few smaller roots
obtained using a Padé approximant can complement these
asymptotic expressions to give all the characteristic roots of a
DDE. However, if a very large coefficient is associated with a
term with a smaller delay (equivalently, the term with the largest
delay has a small coefficient), the large root asymptotics are useful
only for extremely large roots. For such cases, determining the
remaining roots using the Padé approximant is impractical and
alternative asymptotic expansions have been developed. This
study provides practical insight into the location of characteristic
roots of DDEs on the complex plane, and may be useful for fur-
ther theoretical studies as well.

Table 2 First six roots of Eq. (5) for a=1

- 4772N(l—\‘§) + 23\“562\5772\5a2N(\‘5—1) + 22+3/\5,n.1+\‘56\5a sin[(2N+ 1/2) WV’E] :

No. Padé approximant Newton-Raphson
1 —0.3181+1.3372i —0.3181+1.3372i
2 —2.0623+7.5886i —2.0623+7.5886i
3 —2.6532+13.9492i —2.6532+13.9492i
4 —3.0202+20.2465i -3.0202+20.2725i
5 —3.2878+26.5805i —-3.2878+26.58051
6 —3.4997+32.8805i —-3.4985+32.8807i

Table 3 First six roots of Eq. (4) for p=2,4=0.1
No. Padé approximant Newton-Raphson
1 —0.44008 —0.44008
2 —0.5762+2.4326i —0.5762+2.4326i
3 -3.7516+8.5961i -3.7516+8.5961i
4 —4.8189+15.095i —4.8190+15.095i
5 —5.4984+21.4961i —5.4984+21.4962i
6 —6.0014+27.8552i —-6.0014+27.8553i
Table 4 First six roots of Eq. (19) for a;=a,=az;=a,=1
No. Padé approximant Newton-Raphson
1 —0.1639+2.4749i —0.1639+2.4749i
2 —2.3946+8.2369i —2.3946+8.2369i
3 —2.8736+13.6232i —2.8736+13.6232i
4 —2.6442+20.2466i —2.6442+20.2466i
5 —-3.2404+27.0141i —-3.2404+27.0141i
6 —3.8715+32.8327i —3.8703+32.8338i
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Appendix: Smaller Roots

We use MAPLE, to find Padé approximants (as in [24,25]) to
obtain the smaller roots of the characteristic equations of the
DDEs. MAPLE does both symbolic algebra and arbitrary-precision
floating point arithmetic. To see the issues involved, consider

p- \2e7— 320, (A1)

Expanding in a Taylor series, we obtain
= 1 1 1
—1-\2+ (\’E+ 1 +’—§>p— (—r+—)p2+"'
v

Retaining terms up to p'®, we obtain the Padé approximant of
order (5,5). We seek the zeroes of this approximant. The numera-
tor is of the form =;_ycp¥, where ¢ is

6 688 184 704 014 240 — 1 634 855 556 025 440\%

+2 840 749 923 049 92042 — 3 855 543 089 257 440 \"E,
(A2)

and the other coefficients are comparably lengthy. The first few
roots of the numerator polynomial give good approximations to
the first few roots of Eq. (A1). However, the accuracy of the Padé
roots increase with the digits of precision used in the floating
point arithmetic. Results for the smallest root of Eq. (A1), which
is 1.044 643 69, are given in Table 1.

In practice, to find several roots of a DDE, high order Padé
approximants need to be used. The numerator polynomial then
involves long/large coefficients. We therefore numerically evalu-
ate the coefficients of the Taylor series at the start, before Padé
approximants are calculated. Moreover, many floating point digits
are needed for accurate results.

For the three examples studied in this paper, we used 650 digits
of precision (numerical inaccuracies were observed with our pre-
vious choice of 540 digits; no optimization was done on number
of digits) and took a Padé approximant of order either (21, 21) or
(22, 22) depending on the number of real roots obtained. Results,
in Tables 2—4, show good agreement.
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A Representation of Anisotropic
Creep Damage in Fiber
Reinforced Composites

A creep damage model is presented that allows for anisotropic distributions of damage in
composite materials. An earlier model by the writers allowed for anisotropic damage
growth rate but, based on a scalar state variable, failed to account for anisotropic
distributions of damage. A vectorial state variable is introduced that allows a represen-
tation of anisotropic damage distribution. As in earlier work, a fundamental assumption
is that the principally damaging stress components are tensile traction and longitudinal
shear at the fiber/matrix interface. Application of the creep damage model is made to
calculations involving homogenously stressed composite elements under transverse ten-
sile and longitudinal shear stress and to cross plied thin-walled tubes under tension/
torsion. Although the emphasis is phenomenological, with focus on a mathematical struc-
ture for representing anisotropic distributions of damage, a meaningful creep damage
model must rest on fundamental material science and microstructural examination. Veri-
fication experiments involving tension/torsion testing of thin-walled composite tubes to-

gether  with

detailed

microstructural — examination — are  discussed  and

outlined. [DOL: 10.1115/1.1875512]

1 Introduction

Grobstein [1] observes anisotropic damage growth at the fiber/
matrix interface of a W/Nb composite (MMC) under low stress
creep conditions, cf. Fig. 1(a). Grobstein’s results show a pro-
nounced directionality of damage that is evidently influenced
by the presence of transverse tensile stress at the fiber/matrix
interface.

The overall microstructural observations of Grobstein [1,2] are
summarized schematically in Fig. 1(b). With the passage of time
under transverse stress, interfacial defects (voids) appear to grow
and eventually coalesce, leading to increasing degradation of the
interface. The damage distribution at any stage is highly direc-
tional, the major damage accumulating on interfacial tangent
planes that lie essentially normal to the transverse stress direction.
It is conjectured that the physical mechanisms involved may in-
clude phenomena such as Kirkendall porosity [3] and the evolu-
tion of an interphase [1,2].

This description of Grobstein’s observations on the scale of
fibers (e.g., on the mesoscale) could similarly be made regarding
intergranular void growth in monolithic metallic alloys on the
microscale (cf. Hull and Rimmer [4], Chuang and Rice [5], Cocks
and Ashby [6]). Although the physical mechanisms on the two
scales are very different, the schematic picture, Fig. 1(b), may still
apply. The damage distribution is highly directional and the major
damage accumulates on interfacial planes (grain boundaries) that
lie essentially normal to the applied stress direction.

Intuition suggests that an analogous description may also hold
for polymer matrix composites (PMC), now on a molecular scale,
with Fig. 1(b) again applying qualitatively. Again, the scale and
physical mechanisms may be vastly different but mesoscopic fea-
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tures such as a highly anisotropic damage distribution and the
strong influence of transverse tensile stress (and longitudinal shear
stress) at the fiber/matrix interface may remain essentially the
same.

The objective of this research is to develop a phenomenologi-
cal, anisotropic creep damage model for fiber reinforced compos-
ites (MMC, PMC, etc.) that is consistent with the general features
of Fig. 1. The resulting model is an extension of Robinson et al.
[7,8] and Binienda et al. [9]. The earlier model accounts for an
anisotropic rate of damage growth but, resting on a scalar state
variable for damage, fails to account for an anisotropic distribu-
tion as characterized in Fig. 1. The present model allows for an
anisotropic distribution of damage through introduction of a vec-
torial state variable, i.e., a quantity that associates a scalar with
each direction in space.

Although the present emphasis is phenomenological, with focus
on a mathematical structure for representing anisotropic distribu-
tions of damage, it is recognized that a generally applicable dam-
age model for a specific composite (MMC, PMC, etc.) must also
rest on accepted material science and detailed microstructural ex-
amination. Macroscopic experiments supporting the present mod-
eling must ultimately be accompanied by microscopic evidence of
damage as Fig. 1(a).

Application of the creep damage model is made to homog-
enously stressed composite elements under transverse tensile and
longitudinal shear stress and to cross plied thin-walled tubes under
tension/torsion.

2 Anisotropic Creep Damage Distribution

Figure 2(a) is a schematic illustration of a (transversely isotro-
pic) composite element presumed to contain a large number of
fibers with orientation defined by the unit vector d=(1,0,0)-out
of page (cf. Fig. 2(b)). The element is stressed by a transverse
tensile stress o applied at time #=0, at which time the element is
undamaged. Figure 2(b) introduces a unit circle ¢ defined by the

unit vector 77 with 77-d=0. The direction 7z (or —71) designates the
normal to a tangent plane at the interface of a generic fiber in the
composite element (cf. Fig. 2(a)).

W(7z,t) represents the Kachanov [10] continuity at time 7 asso-
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Fig. 1 (a) Microphotograph of the fiber/matrix interface of
W/Nb composite [2]; shows creep damage and nominal stress
direction. (b) Schematic diagram of creep damage progression
observed in [2].

ciated with the interfacial tangent plane whose normal is 7.
Kachanov introduces the concept of actual stress in the context of
isotropic damage, i.e., o,=0/W, and asserts that the rate of dam-
age growth is determined principally by the level of the actual
stress. Here, the actual stress is directional o(i7,1)=0/WV(i1,1)

Fig. 2 (a) Transversely isotropic composite element; fiber di-
rection out of page. Unit vector n denotes normal to interfacial
tangent planes at fiber/matrix interface. (b) Definition of (1,2,3)
coordinates. Unit circle ¢ (dashed) defined by n. Kachanov
continuity distribution ¥(n,0) mapped onto unit circle ¢. Un-
damaged W¥=1.

Journal of Applied Mechanics

(v}

Fig. 3 (a) Composite element showing directional damage—
normal to stress direction. (b) Continuity distribution (solid
curve) in damaged state W(n,f) mapped onto unit circle.

differing on interfacial tangent planes. W(7z,7)=1 implies full con-
tinuity (no damage); W(7,7)=0 indicates total loss of load carry-
ing capacity across the plane with normal 7. The distribution of
W(7,t) can be mapped onto the unit circle ¢. The distribution in
Fig. 2(b) represents the undamaged state (¢=0) while that in Fig.
3(b) represents a damaged state at >0 biased by the presence of
the transverse stress o.

Onat [11,12] and Onat and Leckie [13] represent anisotropic
damage distributions using expansions of irreducible tensors.
They map the distribution at a material element onto the unit
sphere (cf. spherical harmonics). Their representation is coordi-
nate frame indifferent and compatible with continuum theory.

Guided by Onat and Leckie, we formulate an analogous tenso-
rial expansion of W(7z,7) that reflects the inherent transverse isot-
ropy of a composite element (Fig. 2(a)). Our model amounts to a
reduction from spherical to cylindrical coordinates, i.e., from
mapping the damage distribution on the unit sphere as in [13] to
mapping on the unit circle ¢ (Fig. 2(b)). The formulation remains
frame independent in the plane of transverse isotropy with the
local fiber direction aligned in the 1 coordinate direction.

We propose the expansion:

W(i1,1) = o(0) + Y (Of (1) + (O f i) + -+ 0,jk,1=1,2,3

(1)

in which the usual summation convention is used. The set of func-
tions 1,f;j(71),fiji(71),... are orthogonal basis functions and
o), (1), (1), are the Fourier coefficients. As W(7,1)
=W(-n,t), the basis functions involve only even rank tensors,
they are defined as:

= 1
fifm) =nin; = 56;
— 1
fijkl(n) =nminnn, — g(aijnk”l + Sy + Synny + Synny + Sy
1
+ Onin) + 55(8; 0 + Sy + 5;04) (2)

The basis functions are traceless, i.e., f;;=0, f;;;=0... and have
thel (s)ymmetry properties fi;=fii; fiju=frij=fijw=Fjixs; Also, &;

=lo 1
The Fourier coefficients are given by

(1) = Lf W (7, t)dn
2 c
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1
(1) = ;f W (1) f;(m)di
c

1
(1) = ;TJ W (i, 0)f(n)di
c

Now we adopt a definite coordinate system 1,2,3 as in Fig. 2(b)
with the fiber direction d=(1,0,0) along the 1 direction. The co-
ordinate directions 2,3 define the plane of transverse isotropy; we
choose 7(6)=(0,cos 6,sin §). With these definitions, the expan-
sion (1) and the basis functions (2) reduce to linear combinations
of trigonometric functions involving even multiples of 6. More-
over, it is readily shown that (1)—(3) reduce to a standard Fourier
series representation of W(7(6),t) over —w< #< 7. Thus

W (60,1) = th,(1) + (1) cos 20+ ¢hrg(t)sin 260 + iy (t)cos 46
+ lﬂ4s(t)sin 40+ s (4)

with the Fourier coefficients given by

bo(t) = —— f W(6.0d6
27 )

r(t) = lf W (6,1)cos20d6 (1) = lf W(6,t)sin 26d 6
T x T n
(5)
Iuc(t) = lf W (0,1)cos 460d0  ifuq(t) = lf W(6,1)sin 46d0
T & L

Although the frame indifferent representation (1)—(3) is gener-
ally applicable, we adopt the simple Fourier series form (4) and
(5) in the remaining development and in subsequent applications.

3 Flow and Damage Evolutionary Laws

The governing equations are taken from Robinson et al.
[7,8,14], Binienda et al. [9] and [15] with appropriate modifica-
tions. Thus,

ﬂzgq)p—lgll (6)
& 2 oo Py

V(h,r)=—A 7
(0.0 == )

&,; is the creep deformation rate, ® and I';; are as defined in [9].
o, is a reference stress, €,, p, A, v, and m are material constants
and A is the isochronous damage function (defined below).

Note that the coupling in (6) and (7) is through a scalar i,
which from the first of (5) is seen to represent the average of
W(7(6),t) over the unit circle c. This is consistent with the ex-
perimental results of Trampczynski et al. [17], directed to aniso-
tropic deformation and failure of metals, that suggest creep rate
may be more dependent on a measure of total damage (or, for
example, its average i, over c¢), than on its detailed directional
distribution. Of course, justification for this choice regarding
the composites of interest here ultimately requires additional
experimentation.

If only the first term i, is retained in the expansion (4) then (6)
and (7) are identical to Egs. (2) and (3) in [9]. Reduction to full
isotropy reduces (6) and (7) to the “®—A” forms introduced by
Leckie and Hayhurst [18] as a multiaxial generalization of the
Rabotnov/Kachanov equations of continuum damage mechanics
(CDM), cf. Rabotnov [19].

The isochronous damage function A is taken as

486 / Vol. 72, JULY 2005

A(N,S), where N(6) =(o;n;(6)n,(6)) and S(6) =|o;n;(6)d}|
(®)

N in (8) represents the tensile traction acting on an interfacial
plane with normal 7; S represents the longitudinal shear acting on

the plane of normal 7 and in the direction of d (or —d). As in
earlier work, in the absence of a complete experimental definition
of A(N,S) we adopt, for simplicity, the linear form

A(N,S) = L(N+ as) )
0-0
where « is an additional material constant.

Thermodynamic constraints ensuring dissipativity in a class of
evolutionary laws including (6) and (7) are discussed in by Onat
and Leckie in [11,13]. Equations (6) and (7) are identifiable as
“Q)-forms” in the thermodynamic formalism of [11,13] (P relates
to a dissipation potential }). Conditions for thermodynamic dis-
sipativity are that ® (or () is non-negative and ®=const. (Q
=const.) are convex, nested surfaces enclosing the origin of state
space. These conditions are seen to be met in Eq. (5) of [9],
defining ®. In addition to an accompanying discussion in [9], a
related discussion on thermodynamic dissipativity is given in [14].

The distribution of continuity W (72(6),t) of a composite element
evolves in time. Its rate of change is obtained by differentiating
(4) as,

W(0,1) = i, (1) + tr(1)cos 20+ ghg(1)sin 20+ gy (r)cos 40

+ Uys(1)sin 40+ g (1)cos 60+ Pgs(1)sin 66+ -+ -
(10)
where, looking ahead to applications, we have extended the ex-
pansion to include terms in 66.

Differentiating (5) and making use of the damage evolutionary
law (7), we write

o =—2 [ A
Yolt) = 2w ) _W(6.1)
el == A 26d6
A=) wen ©°
() =~ 2 TA in 2646
V== ) e
. AT A
=-= 40d6 11
thyc(t) Wf_ﬁ‘l’”’(é’,t) cos (1D
() =2 TA o aae
Ps==2 ) wron "
ROE AfT_ar 60d6
Vo)== ] e
0] AT _a in 66d6
=—— 1n
SO=TT ) wen

Integration of (10) and (11) over the unit circle ¢ and time 7 yields
the current continuity distribution W (72(6),7). In many structural
applications the stress components are referred to a global coor-
dinate system; these can be transformed readily to the local fiber
coordinates as illustrated in the following applications.
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Fig. 4 Damage of composite element under transverse ten-
sion. (a) Undamaged state (solid curve) ¥(n,0)=1 at t=0. (b)
Partial damage (solid curve) t>0. (¢) Continuity distribution
(solid curve) W (A, t) at failure t=1r. (d) i, vs t/tr (€) e/ eryte Vs
t/tr showing acceleration of creep rate (solid curve).

4 Applications

We now apply (4)—(11) in some simple problems. Integration is
accomplished using simple numerical techniques. The quadratures
involved in (11) make use of standard procedures built into Math-
CAD 2001; the time integration uses a fourth order Runge—Kutta
method also available in MathCAD 2001. The expansions (4) and
(10) include terms through 66. Obviously, additional terms and
more sophisticated numerical techniques can be used to achieve
increased accuracy.

4.1 Composite Element Under Transverse Tension. First,
we consider damage evolution under constant transverse stress. In
the coordinates of Fig. 2(b) the stress components are 0,=0a, (the
reference stress) with o=033=0,=03=023=0. Using (8) we
have

N(6) = {0ypnyn,) = 0, cos*(6) and S(6) =0 (12)
From (9) the isochronous damage function A is
A(6) = cos*(6) (13)

For the sake of this and subsequent calculations we chose the
following values of the material parameters in the flow law (6)
and damage evolutionary law (7): A=1, v=6, m=4, and p=6.5.
These values are chosen for convenience and to match those de-
termined experimentally for a model PMC in [8,9].

The results are shown in Fig. 4. Figure 4(a) depicts the undam-
aged state at /=0 with the continuity distribution W=1; Fig. 4(b)
shows partial damage at a later time >0 and Fig. 4(c) is the
distribution at =f; when the interfacial tangent planes normal to
the loading direction 2 have totally lost load carrying capacity (for
reference in subsequent calculations ¢z will generally designate
the time under constant tensile stress o, at which failure occurs on

Journal of Applied Mechanics
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Fig. 5 Isotropic damage evolution. (a) Undamaged state (solid
curve) ¥=1 at t=0. (b) Partial damage (solid curve) t>0. (c)
Isotropic failure (solid curve) =0 at t=1.

interfacial planes normal to the loading direction). Evidently from
Fig. 4(c), other interfacial tangent planes within the element retain
some carrying capacity.

The adoption of a general “failure” criterion for a composite
element damaged as in Fig. 4(c) is not straightforward. Correla-
tion with microstructural examination (cf. Fig. 1(a)) is critical and
needs to be made using appropriate experimental techniques,
however, a nondestructive, macroscopic failure criterion is needed
in structural applications. Such a criterion may be specific to a
given application, e.g., it may uniquely depend on the particular
loading history.

A common experimental failure criterion relies on the observed
acceleration of creep rate with damage. As indicated earlier, the
coupling of damage and creep rate in (6) is taken through i,
which from the first of (5) is seen to represent the average of
W (7(6),1) over the unit circle c. The time variation of ,(7) in this
application is plotted in Fig. 4(d); i,~0.83 at the failure time 7.
Note that ,(7) decreases rapidly as r— t.

The creep rate €=¢,, under a transverse tensile stress o=, is
calculated from the flow law (6) which reduces to a version of the
simple Norton/Bailey form
P

= (14)
|o]

g ‘ o
ALLS

as shown in [8]. &py is the creep rate for the undamaged material
(,=1) under the reference stress . Taking o=0, and p=6.5 in
(14) and integrating, we calculate the creep strain &(z) in 0<r
<tp. This is plotted nondimensionally as &/&rntr versus ¢/tg in
Fig. 4(e). We observe measurable acceleration of creep rate as
indicated by the ratio £(r7)/£(0) =~ 3.3. Thus, there is a theoretical
correlation relating an increase in creep rate (by about X3), a
corresponding decrease in i, (to =0.8), and a loss of load carry-
ing capacity normal to the loading direction (viz., Fig. 4(c)).
Whether this correlation exists in reality must be shown by ex-
periment (both macroscopic and microscopic). A precise definition
of failure is left for future study. Presently, we shall view elemen-
tal failure as the calculated loss of load carrying capacity across
any interfacial tangent plane.

In contrast to Fig. 4, Fig. 5 shows isotropic damage evolution as
modeled in Binienda et al. [9] or, equivalently, the present model
reduced to a single term ¢, in the expansion (4). Again, the stress

ETN
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Fig. 6 Damage under stepwise stress history. (a) Partially
damaged state (solid curve) at t=0.9t; just before change in
stress direction. (b) Fully damaged state (solid curve) at t
=~1.871r after final stage of stress o33=0,.

o, is applied along the 2 direction. Figure 5(a) is the undamaged
state at 1=0; Fig. 5(b) shows partial damage at t<<0 and Fig. 5(c)
is the fully damaged state at =t where all interfacial planes have
(isotropically) lost load carrying capacity, viz., ¥=0.

The response to stress histories that involve changes in direc-
tion are of particular interest. To address this we consider an ele-
ment first stressed along the 2 direction as in Fig. 4. At some later
time the stress direction is changed to the 3 direction. The latter
segment of the stress history requires a redefinition of the isoch-
ronous damage function A. Here, the stress components are 033
=0, with g11=0n= 0'1220']3:0'2320. Again, using (8) we have

N(6) ={o33n3n3) = 7, sin*(6) and S(6) =0 (15)
From (9) A is
A(0) = sin*(6) (16)

The damage evolution for the stepwise stress history is shown
in Fig. 6. Figure 6(a) shows the partially damaged state at ¢
=0.9t, i.e., the selected time when the directional change in stress
is made. Figure 6(b) shows the continuity distribution at ¢
~1.87tp, the calculated time (from r=0) when the interfacial
planes normal to the final loading direction 3 are exhausted of
carrying capacity. Recall that a constant stress o, applied mono-
directionally produces failure at #=t;. Thus, the total time to fail-
ure in the stepped history is about 87% greater than that under
constant o,. Of course, this is because changing the stress direc-
tion allows material on lesser damaged interfacial planes to sup-
port the load following the stress change.

Moreover, referring back to Fig. 5, it is evident that if the dam-
age distribution remained isotropic as in the Binienda et al. [9]
model, the failure time in this application would be z=7 regard-
less of any directional change in stress. Obviously, this is a con-
servative lifetime estimate as argued in Binienda et al. [9].

4.2 Composite Element Under Longitudinal Shear. A fun-
damental assumption in this research is that the damaging stress
components are the tensile traction and the longitudinal shear act-
ing at the fiber/matrix interface. The damage evolution under
transverse tensile stress was examined in the previous section.
Here, we examine the response under longitudinal shear stress.

Again, referring to the coordinate system of Fig. 2(b), we con-
sider the stress state: oj,=0, With 011=09=033=013=023=0.
From (8) we have

N(0)=0 and S(6) = |o,n,d;| = o,|cos 6
and from (9) A is

(17)

A(6) = alcos 6

In these calculations we take a=0.5.
Figure 7 shows the final continuity distribution under constant
longitudinal shear stress oj,=0,. The failure time, i.e., the time

(18)
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Fig. 7 Damage of composite element under longitudinal
shear. Continuity distribution Ww(n,t) at failure t=60t: (solid
curve).

for shear failure on interfacial planes normal to the 2 direction, is
calculated to be 1= 60ty (recall that ¢y is the failure time under
transverse tensile stress o). A comparison of Fig. 7 and Fig. 4(c)
shows only a slight difference in the shapes of the final continuity
distributions associated with longitudinal shear and transverse ten-
sion. The shapes reflect the respective damage functions (18) and
(13), but also depend on the choice of material parameters used in
the calculations.

Whereas the predicted shapes of the continuity distributions at
failure show only minor differences, the underlying physical fea-
tures of damage relating to longitudinal shear and transverse ten-
sile failure (cf. Fig. 1(a)) are likely to show major microstructural
differences. Again, it is essential that microstructural examination
be included as part of the experimental verification of the present
damage model.

Once again, it is of interest to consider a history of changing
stress. Figure 8 shows the results of first applying a shear stress
op=0, for t=50t, then changing to a transverse tensile stress
033=0,. Figure 8(a) shows the continuity distribution at =507,
following the application of the longitudinal shear stress. Figure
8(b) is the distribution after application of the tensile stress o33
=0, to failure, i.e., to the loss of carrying capacity on interfacial
planes normal to the 3 axis. This occurs in a time period t=ty
(following the change in stress), i.e., nearly unaffected by the

2 2

AT \ T X
7 \ ; Ve N\
/ \ ; / \

3 - ‘\ /’ 3 T g ;
\
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(a) (]

Fig. 8 Damage under stepwise longitudinal shear/transverse
tension. (a) Partial damage under longitudinal shear for t
=501 (solid curve). Distribution just before stress change to
033=0,. (b) Continuity distribution W(n,#) at failure (solid
curve) after o33=0, is applied for t=t..
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Fig. 9 Damage under stepwise longitudinal shear / transverse
tension. Continuity distribution W(n,{) at failure (solid curve)
after application of longitudinal shear for t=50tg, then o,,=0,
applied for t=0.151.

initial damage caused by longitudinal shear.

Figure 9 shows the result of a variation on the previous loading.
Here, after applying longitudinal shear for r=50¢, a tensile stress
0y =0, is applied. The continuity distribution is identical to Fig.
8(a) at t=50r5. The final distribution after exposure to oy, =0, is
shown in Fig. 9. In this case failure occurs in a time period ¢
~0.15t; following the stress change, only 15% of that corre-
sponding to Fig. 8(b). This illustrates the anisotropy induced, in
this case, by the initial longitudinal shear loading. What was origi-
nally a plane of isotropy (i.e., the 2-3 plane) becomes anisotropic.

4.3 Tension/Torsion of Thin Tubes With Two Families of
Fibers at +¢. Here we consider thin-walled tubes reinforced by
two distinct families of fibers designated by the unit vectors @ and

b in Fig. 10(a); the fibers make angles +¢ with the tube axis. We
conjecture that each fiber family incurs damage as in the case of a
single fiber family, i.e., by the presence of tensile stress and lon-
gitudinal shear stress normal and parallel to their respective fiber-
matrix interfaces.

The tube is loaded by an axial force F and a torque T generating
the state of stress

S
9
=)

S
I
N
=)
o

(19)

ij =

o
(=)
(=)

at a typical wall element. The components (19) refer to the coor-
dinate system (1,2,3) in Fig. 10(a).

We adopt an additional fiber related coordinate system
(17,27,3") as in Fig. 10(b) that is formed by rotation of +¢ about
the 3 axis. The 1’ axis coincides with the fiber direction; it aligns
with the a fibers under rotation ¢ and with the b fibers under
rotation —¢. The stress components referred to the (1',2',3")
system are

Journal of Applied Mechanics

(©)

Fig. 10 Thin tube under tension/torsion reinforced with two

fiber families 4 and b at +¢. (a) Definition of coordinate axes
(1,2,3). (b) Definition of fiber coordinate axes (1',2',3’). Fiber
direction 1'. (¢) Unit circle ¢ viewing back along 1’ direction.

ocos’ p+ Tsin2¢p - g sin2¢+ 7cos2¢ 0

y= —gsin2¢+7'0032gb osin? p-7sin2¢ 0

0 0 0
(20)

Viewing back along the 1’ axis (the fiber direction) we observe
the unit circle ¢ in Fig. 10(c). Its defining unit vector 7 is

71(6) = (0,cos 6,sin 6)

in (1',2',3") components.
Returning to (8), we have

N(6,p) ={oy1ymyny) = {0 sin® ¢ — 7sin 2p)cos’ 0

(21)

(22)

and

|cos 6] (23)

ag
S(6.¢) =ormyd,| = ’— 5 sin 2¢+ 708 2¢

where, again, all components are referred to the (1’,2",3") sys-
tem. Note that in (23), d; =a,=1 for +¢ and d;,=b,=1 for
—¢. The damage function A(N,S) is obtained by introducing (22)
and (23) into (9), thus

L

A6, 9) [(o'sinz¢—7's1112<;§)cos2 0+« —gsin2q§

o

+7C0s2¢ (24)

|cos 0|]

(24) holds independently for each fiber family; @ with +¢ and b
with —¢.

In applications, the independent continuity distributions
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afibers

Fig. 11 Continuity distributions for both fiber families at =1
(solid curves). Positive twist with 7=,

W ,(0,1) and V5(6,1) evolve according to (4)—(11) with (24). Each
distribution has a damage evolutionary equation identical to (7).
Referring to (4), the lead terms in each of the expansions W,(0,1)
and Wp(0,1) are ¢,4(t) and (7). From (5) these represent the
current averages of the distributions over their respective unit
circles ¢. For an arbitrary composite volume V, we consider the
volume average

*Po(r)=lv< f Poa(1)dV + f %B(t)dv)
Vi Vg

Applying (25) to a homogeneous (continuum) element in which
Va=Vp=V/2, we have

Wo(1) = 5(hoa0) + Pop(0)) (26)

The average (26) replaces i,(¢) as the coupling variable in a flow
law analogous to (6) for the two-fiber-family representation, cf.,
Robinson [16].

We are now in a position to calculate the damage response of
thin-walled tubes with +¢ fibers to a general tension/torsion load-
ing using (4)—(11) with (24). However, we shall consider only a
special case that relates to experiments proposed in [9]. We con-
sider a tube with fiber directions ¢=+7/4 (+45°) under forward
and reverse torsional (shear) loading, viz., (o, 7)=(0, £ 7).

First, we consider a tube subjected to positive torque 7 produc-
ing a state of shear stress 7=0,=0,; With 0;=0y=033=03
=0,3=0. These are components relative to the (1,2,3) axes in Fig.
10(a). The damage distributions at failure (r=1;) are calculated
using (4)—(11) with (24) and are shown in Fig. 11 for each of the
fiber families. The a fibers remain undamaged while the b fibers
show a loss of load carrying capacity on interfacial planes normal
to their associated 2’ direction. The failure time ¢ is consistent

(25)

with earlier results in that the b fibers experience a transverse
tensile traction o,; the a fibers have zero transverse traction. As
identified earlier, the coupling term in the flow law for two fami-

lies of fibers (cf. Robinson [16]) is ¥, (¢) in (26). The time varia-
tion of W,(¢) in this application is shown as the dotted curve in

Fig. 12; it is seen that ¥ ,~0.91 at t=t;.

Next we consider a stress history where a tube is subjected to a
negative torque —7 prior to the application of positive torque T as
considered above. The state of shear stress under the negative
twist is 7=—0,. This is held for a selected time r=0.9t; after
which the shear stress is changed to 7=0,. The partial damage
distributions at the stress change (1=0.97z) for both fiber families

are shown in Fig. 13; the b fibers are yet undamaged. Following
the stress change, failure is calculated to occur at 7= 1.9t when

the load carrying capacity of the b fiber family becomes exhausted
across planes normal to their 2’ direction. The final continuity
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Fig. 12 \I_fo versus t/tz. Dotted curve relates to continuity dis-
tributions of Fig. 11; solid curve relates to continuity distribu-
tions of Fig. 14.

distributions at failure (=~ 1.9¢;) are given in Fig. 14. Whereas the

b family has failed, the @ fibers remain partially damaged as in
Fig. 13.
The time variation of the deformation/damage coupling quan-

tity W,(r) is shown in Fig. 12 (solid curve). Its value is W,
~0.95 at the stress change (r=0.9¢z) and ¥, ~0.86 at failure (¢

We are interested in the shear strain in the tube over 0=t
< 1.9¢. In particular, our interest is in the calculated acceleration

afibers b fibers

Fig. 13 Damage of tube under reversed twist history. Continu-
ity distributions for both fiber families (solid curves) at t
=0.91¢, under negative twist (7=-0,) just prior to twist reversal.

a fiber b fiber

Fig. 14 Damage of tube under reversed twist history. Continu-

ity distributions for both fiber families (solid curves) at failure,
after final positive twist (7=0,). Failure time is t=1.9%..
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Fig. 15 Damage of tube under reversed twist history. Creep
strain history y/y,tr versus t/tg (solid curve) showing creep
rate acceleration approaching t=1.9t.

of creep rate accompanying the approach of failure at 7= 1.9¢;. An
equation analogous to (14) is derived in [16] for calculating the
shear strain rate () in a composite with two fiber families. Thus,

v T T

7" \I_jo(t)o-o H

where 7, denotes the shear rate for the undamaged (+45 deg two-

27)

family) composite element with ¥ =1 and 7=+ o,

Taking 7=+ 0, and p=6.5, (27) is integrated to determine y(r)
in 0=<t=<1.9¢. This is plotted nondimensionally in Fig. 15 as
vl yotr versus t/tp. Negative shear strain accumulates prior to the
stress change at 1=0.9¢, it then reverses and accelerates as failure
approaches. The extent of acceleration is characterized by the ra-
tio ¥(1.917)/ ¥(0.915) =2.4.

Here again, a hypothetical correlation exists relating the accel-

eration of creep rate (by a factor of 2-3), a decrease of ¥, (to
~0.86) and a total loss of carrying capacity on interfacial planes
normal to the loading direction. As indicated earlier, verification
of this correlation in a real composite material needs to be estab-
lished by experiment. The application considered here involving
reversed twisting of a tubular specimen having fibers at +45 deg
provides a useful vehicle for experimental verification.

Consider experiments of this kind generating a shear strain-time
response as in Fig. 15. Loading continues until the creep rate is
observed to increase by =~2-3 times. The “failure” time is noted
and the specimen is unloaded, dissected and examined microstruc-

turally. The proposed model infers that the b fibers should appear
critically damaged (cf. Fig. 1(a)) on interfacial planes normal to
their associated 2’ (in plane) direction. The a fibers are expected
to show lesser damage, cf. Fig. 14. A sequence of tests of this
kind, involving various degrees of creep rate acceleration, other
stress histories, etc., serve as a comprehensive assessment of the
present model.

5 Summary and Conclusions

A phenomenological creep damage model is formulated that
allows for an anisotropic distribution of damage in composite ma-
terials having long or continuous fiber reinforcement. Faithful rep-
resentation of anisotropic damage distribution is important for ac-
curately predicting stress redistribution in damaging structures
and thereby accurately estimating lifetime. An earlier constitutive
model by the writers allowed for anisotropic damage growth rate
but, resting on a scalar damage state variable, failed to account for
anisotropic distributions of damage. Here, in effect, a vectorial

Journal of Applied Mechanics

state variable is introduced that permits a representation of aniso-
tropic damage distribution. As in earlier work, a fundamental as-
sumption is that the principally damaging stress components are
tensile traction and longitudinal shear at the fiber/matrix interface.

This research is guided by the work of Onat [11,12] and Onat
and Leckie [13] in which expansions of irreducible tensors are
used to map anisotropic damage distributions on a unit sphere.
Here, accounting for material symmetry of the composite and the
assumed critical stress dependence, we map anisotropic damage
onto a unit circle normal to the local fiber direction (or directions).
The reduced tensorial expansion is shown to be equivalent to an
ordinary Fourier series expansion over the unit circle.

Although the present emphasis is phenomenological, with focus
on a mathematical structure for representing anisotropic distribu-
tions of damage, any creep damage model must rest on fundamen-
tal material science and microstructural examination. Macroscopic
experiments supporting the present modeling need to be accom-
panied by microscopic evidence of damage, e.g., as in Fig. 1(a).
Combined micro/macroscopic verification experiments are de-
scribed in the previous section; they are based on tension/torsion
testing of thin-walled composite tubes with fiber reinforcement at
+45 deg to the tube axis. Related experiments were supported by
the National Science Foundation under Grant No. 0001634 and
published in [8,9]. These include tests for defining the form and
functional dependency of the isochronous damage function (8).
Additional experiments involving nonproportional stressing as in
[17] may be required to justify coupling in (6) and (7) being based
solely on the leading scalar term ¢, in the expansion (1) (or (4)).
Experiments of this kind are under definition by the authors. If
experimental verification of a scalar coupling in (6) and (7) were
not established, the same general representation holds but at the
expense of considerable complexity.

The specification of a general “failure” criterion for an aniso-
tropically damaged composite element is not straightforward. In
terms of model development and verification, correlation with
micro-structural examination is critical, however, a macroscopic
failure criterion is needed in structural applications, e.g., should
structural failure be based on total loss of load carrying capacity
in any orientation, on some average measure over the unit circle c,
on detection or calculation of accelerated creep rate, etc.? This
topic is left for future study.
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1 Introduction

Fourier’s law of heat conduction, which has been used to drive
the heat conduction equation in classical unsteady heat transfer
problems, results in a parabolic equation for temperature filed and
an infinite speed of heat propagation, thus violating the principle
of causality. Maxwell [1] derived the generalization of Fourier’s
heat law for the dynamical theory of gases. Maxwell’s heat flux
equation contains a term proportional to the time derivative of the
heat flux vector multiplied by a constant relaxation time 7. Since 7
had a very small magnitude in Maxwell’s work, he took it to be
zero. In justification he remarked, “The first term of this equation
may be neglected, as the rate of conduction will rapidly establish
itself. Ackerman et al. [2] established the second sound in solid
helium, which gave a finite speed of propagation of thermal
waves. Puri and Kythe [3] have studied the influence of general-
ized law of heat conduction, using the Maxwell-Cattaneo-Fox
(MCF) model, on Stokes’ first and second problems for Rivlin-
Ericksen fluids with nonclassical heat conduction. Kythe and Puri
[4] studied the unsteady magnetohydrodynamics (MHD) free-
convection flows on a porous plate with time-dependent heating in
a rotating medium. Puri and Kythe [5] have studied an unsteady
flow problem which deals with nonclassical heat conduction ef-
fects and the structure of waves in the Stokes’ second problem. In
the MCF model as developed by McTaggart and Lindsay [7], the
nonclassical constitutive equation for the heat-flux vector ¢q is
given by the Maxwell-Cattaneo equation in the form

T(‘?i—wiﬂj)=—‘1i—)(0;’ (1)
where w;; is the vorticity, y the thermal conductivity, ;= dq/ dt, 6
the temperature, and 7 the thermal relaxation time. Equation (1)
reduces to that of the Cattaneo model at w;;=0 and it becomes
Fourier’s law for 7=0 (see Joseph and Preziosi [8,9]). While there
are other good models to choose from, the Cattaneo law, as stated
in Joseph and Preziosi [8,9], has many desirable properties. For
example, the steady heat flow is induced by temperature gradients
and gives rise to finite speeds of propagation. The dimensionless
thermal relaxation time, defined as A=Cp, where C and p are the
Cattaneo and Prandtl numbers, respectively, exhibits a definite
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second problem of a micropolar fluid. The effects of the thermal relaxation time and the
structure wave on angular velocity, velocity field, and temperature are investigated. The
skin friction, the displacement thickness, and the rate of the heat transfer at the plate are
determined. [DOI: 10.1115/1.1875412]

influence on the structure of waves. It significantly modifies their
behavior. The number \ also appears in generalized thermoelas-
ticity [10] where it is defined as m and is shown to be of the order
1072. Again as noted in Puri and Jordan [11], the Cattaneo number
C may not be very small in astrophysical applications. For ex-
ample, C is of order 1072 in a low temperature hydrogen gas.
However, the thermal relaxation time A does not appreciably
change the magnitude of the temperature and velocity fields. Puri
and Jordan [6] studied some recent developments in the unsteady
flow of dipolar fluids with hyperbolic heat conduction. Eringen
[12] introduced the theory of micropolar fluids in which he ex-
plained some fundamental problems for future theoretical and ex-
perimental studies. These problems include: well-posedness basic
initial boundary value problems for micropolar fluid flows, right
choice of boundary data for microrotation field, comparison of
micropolar fluid flows with Navier-Stokes flows, new questions in
the theory of turbulence, and range of applicability of the model.
A lot has been done since in the frame of this broad project,
however, many important problems remain open. Peddieson and
McNitt [13] and Willson [14] have introduced the boundary layer
concept in such fluid. The study of flow and heat transfer for an
electrically conducting micropolar fluid past a porous plate under
the influence of a magnetic field has attracted the interest of many
investigators in view of its applications in many engineering prob-
lems such as magnetohydrodynamic, generator, plasma studies,
geothermal energy extractions, and the boundary layer control in
the field of aerodynamics Soundalgekar and Takhar [15]. Mi-
cropolar fluids are fluids with microstructure belonging to a class
of fluids with non-symmetrical stress tensor. Physically, they rep-
resent fluids consisting of randomly oriented particles suspended
in a viscous medium Lukaszewicz [16]. Eringin [12] formulated
the theory of micropolar fluids and derived constitutive laws for
fluids with microstructure. This theory included the effects of lo-
cal rotary inertia and couple stresses and expected to provide a
mathematical model for non-Newtonian behavior observed in cer-
tain manmade liquids and theologically complex fluids such as
liquid crystals, polymeric suspensions, and naturally occurring
liquids such as animal blood. Kim and Fedorov [17,18] studied
unsteady MHD micropolar flow and heat transfer over a vertical
porous moving plate with variable suction.

One can consider this article as both a generalization of re-
search of Puri and Kythe [5] and Puri and Jordan [19] to Stokes’
second problem for micropolar fluids and as an extension and
refinement of the work of Puri and Jordan [11]. Our motivation in
doing this work stems from the ever growing number of flow
temperature and or high heat flux applications of non-Newtonian
fluids in areas such as medical research, space exploration, and
low-temperature physics. Last, we must note that in the general
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case of thermoviscous fluids, particularly monoatomic gases, a
complicated mutual interaction between temperature and velocity
fields, particularly monoatomic (see Miiller and Ruggeri [20], pp.
1-61). Thus, because of the linear nature of the problem presented
here, this work should be considered as only a first approximation
to a more complex problem.

2 Mathematical Analysis

Consider the one-dimensional unsteady flow of a laminar, in-
compressible, micropolar fluid past a vertical flat plate in the xy
plane and occupy the space z>0, with the z axis in the vertical
direction. The plate initially at rest and at constant temperature 6.,
which is the free stream temperature is moved with a velocity
Uye'® in its own plane along the z axis, and its temperature is
subjected to a periodic heating of the form (6,,— 6.)e'®, where
0,,# 0., is some constant. The basic equations of continuity, mo-
mentum, angular momentum and energy governing such a flow,
subject to the Boussinesq approximation, are

vzi=0, (2)

pu; == P+ (m+ p)V20; = pl1 - a6 - 6,)1g8, + 2u,N ; + 113,

(3)
pi'N = yV’N', (4)
pe=—q;;+tydy. (5)

Where the vector v=(u,0,0) represents the velocity, p the density,
7" the microinertia density, N* the component of angular velocity
vector, vy the spin-gradient viscosity, x4 the dynamic viscosity, P
the pressure, ¢ the specific internal energy, « the coefficient of
thermal expansion, g the acceleration due to gravity, t;, the non-
Newtonian stress tensor, and d;;, the strain tensor.

The effect of microstructure is negligible in the neighborhood
of a rigid boundary since the suspended particles cannot get closer
than their radius to boundary (Ahmadi [21]). Thus in our study we
consider the only rotation is due to fluid shear as pointed in Eq.
(4).

Taking into account the geometry of the problem which results
in the disappearance of the dissipative terms and noting that #;
=0, Egs. (2)—(4) reduce to the following equation of motion:

u, = (v+ v,)u; +ga(0 - 6))+ 2v,N:, (6)
£ l £
N,=—N._. (7)
7

Equation (1), after substitution into Eq. (5), gives

pe,0 == q;,. (8)

Where e=c, 6 for the MCF model. If we drop the nonlinear terms
Tw;q; in Eq. (1) because 7 and w are small quantities, we get

Tq;i=—qi;— Xe,ii~ 9)

Which in one-dimensional form, after dropping the convective

terms (because these terms become automatically zero), leads to

0+ 6 =20,

pcp
Note that the term 7'0:; in Eq. (10) is necessary to ensure finite
speed of propagation. We shall use the nondimensional quantities.
e e 2
= 0* — 0(»)« s N)‘ = %
0, -6, v

(10)

R =y L
z ==z, u =Uyu, =1,
Uy U3

N.

(11)

Then the governing Egs. (6), (7), and (10) for the flow, angular
velocity and heat conduction, after suppressing the primes, be-
come
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u,=(1+Bu,+GO+2p6N.,, (12)
1
Ny==N,. (13)
n
Apb,+pb6,=0... (14)
Where G is the Grashof number and S viscosity ratio
vga 0*, -6, vpc TxU,
G=2" 20 (”3 0), p="r = Z( °,
U, X vpc,
U} 2
N=—"=C, 7= (15)
v 2+
The boundary conditions are
, . IN(,1) —Pu(0,1)
O,t - tu)t’ 0 O,t - lwt, - ,
u(0,)=e (0.1)=e P P
u(e,1)=0, 6(,1)=0, N(»,1)=0. (16)

To solve the nonlinear systems, (12)—(14) with the boundary con-
dition (16), We assume that

u(z,1) = U(z)e'™,
0(z,1) = O(z)e™”,

N(z,1) = N(z)e'™". (17)

If we substitute by Eq. (17) in Egs. (12)—(14) and the boundary
conditions (16) we get.

(I1+PU"-i0U=-GO -2BN’, (18)
N'—iongN=0, (19)
0"+ \pw? —iwp)® =0. (20)
The boundary conditions are
Uu)=1, ©6(0)=1, N'(0)=-U"(0),
U(®)=0, ©O(2)=0, N(*)=0. 21)
We get the solution under modified boundary conditions as
U(Z) =M (Gl + iGZ)(e—mz _ e—(r1+ir2)z)
= (Sy +iSy)(e™ = ™), (22)
+i G
Nz = ——— (23)
2(1-BINw/(1+ B)
O(z) = e nitin)e, (24)
where
® 1)
— 1 1 —7 — 1 [ _’
m=( +l)\/2(1 ) m;=( +z)\l2+,8
\/ (\"(1 +2\%0?) F 7\w>
Fip= oP\ ——mMmMM888 N
’ 2
G(\Pw? - io(75 - P))
Gl +iG2= 5 2 4 B 1 27>
1+ A\’ + (715 -p)°]
212+ +iG
Sy +iS, = 22+ Pw+iG) (25)
(1-po

From Eq. (23), we find that
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Re u(z,t) = e’z“mcos[wt — zVw/2(1 + Bl- e’“““’/z(”'g){(Gl
+8)cos[ wt — ZV'M] — (G, + Sy)sin[wt
_ ZV’M]} + e G, cos(wt — ryz) — Gysin(wt
= 12)]+ € EBLS cos[wr - 2wl (2 + )]
— Sysin[wr — 2\ o/(2 + B} (26)

In the classical case, for micropolar fluid (8# 0) the solutions for
both temperature and velocity fields can be obtained by taking A
=0 in Egs. (24) and (26), respectively. Then

0(z,l) — e—(l+t’)z\“‘M+iw17 (27)

u(z,0) =[e™™ = iGy(e™ — e7™%) — (S1 +iS2) (e — e7™%) [,
(28)
for G;=0 and G,=G/ Bw. Also in the classical case for Newtonian
fluid (B=0, p=1, and A=0) becomes a singular case and the so-

lution for the velocity in the this case for p=1 has to be obtained
directly in the form

(29)
2\2w

We notice that this is the same result as obtained by Puri and
Kythe [5]. The velocity field based on Fourier’s heat law is ob-
tained by setting B=1 in the above expressions. However, taking
B=1, is a singular case. The directly obtained singular solution for
the velocity field is given by

u=(z,0) = {7 = (G3 + iG,) (e — e~ U1H12)7) _ (8, 4 iS,)z(e7
_ efm3z)}efiwt. (30)
Where

1 — 2
my = 5(1 +ilNo, my=(1+i)\w/3,

GANPw* +iGw(p —0.5)

Gy +iGy =
3T 2(N2prat + w*(p - 0.5)%)

(w—G2)+i(w+ G/2)
4\"“‘(»/3

S3 + lS4 =
For the singular case of p=1, A=0, 8=1Reu it is given by

Reu= exp(— %\Z){(l -G;— zS3)cos(wt - %\Z) + (G,

+ zS4)sin(a)t - %\;) } + exp(— zr)(Gscos(wt — zr)

— Gysin(wt — zr,) + exp(— z\e"m){zS_gcos(a)t - z\f'm)

— z8,sin(wt — z\e“’w_/3)}. (31)
The standard definition of the displacement thickness &" is
5*=J (1 -i)dz, (32)
Uy

where Uy is the free stream velocity. In our case, the plate is
moving while the free stream is stationary. Therefore, the formula
(32) is modified, and in the nondimensional form is given by

|5*|=f udz,
0

this formula can also be obtained by imparting to the entire sys-
tem a negative velocity equal to the velocity of the plate. Using

(33)
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the formula (33) the absolute value of the displacement thickness

is given by
B 1 . 1 1 .
|5|= _—(G1+1G2) - = i —(S1+lS2)
m m  (ry+iry)
L)
nmy

This thickness, in classical case, is |8"|=|1/m—(iw/(1-8))(1/m
—1/m,)| in the absence of heat transfer. But in the singular case of
A=0, p=1, and B=0 it is given by

1
m

for all p,A #0, and B# 0. (34)

* 1 9,5 2
|6°] = —=\1+GY4a?,

(35)
Vo
and for the singular case of A=0, p=1, B=1 is given by
1 1 1 1 1
8=|—-(G5+G (—-—)— Sy +iS (———) )
19 m, (G5 +Ga) my  (ry+iry) (S5 +i54) my  m3
(36)

We can now calculate the skin-friction and heat transfer coeffi-
cients in terms of the Nusselt number at the wall of the plate:

T, = Z_u ={—m+ (G, +iGy)[m — (r; +ir) ]+ (s; + isy)(m
7| .=
—ml)}exp(iot), (37)
Nuy'= - 96 =(ry +iryexpliot). (38)
Jz 2=0

3 Discussion

The oscillatory nature of the flow generates waves in the both
temperatures, velocity fields and the angular velocity. Although
these waves decay rapidly, it is of some interest to understand
their structure.

3.1 Wave Structure and Thermal Waves. In the temperature
field the behavior of the thermal waves can be obtained from the
solution (24). From this solution we can conclude that the thermal
waves exhibit one type of dispersive wave trains with a wave
front at z=wt/r,, w is the angular frequency, r; the attenuation
coefficient, and r; is the wave number, then phase velocity V is
defined as

®
Vy=wlry= \/ , (39)
¢ g 2p(V1 + N2 w? + \w)
from Eq. (25), one can solve for w in terms of r, and get
rErZ
N
2 (40)

W= —
\p(p +4Nr3)

The group velocity is the velocity with which energy propagates
and is defined by

do 2\20(1 + N2w?)
dr, \*‘Z()x&)+ V14 \2w?)¥?

V, <V, = Normal dispersion, V,

>V, = Anomalous dispersion,

(41)

Normal dispersion means that waves appear to emanate from the
front and disappear in the rear. Anomalous dispersion means that
waves appear to emanate from the rear and disappear in the front.

V, =V, = There is no dispersion
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No dispersion means that there is no relative motion of the group
and the carrier occurs and the group travels without distorsion of
the wave shape. The above Eq. (41) for N—0 reduces V,

—2\2w/ w/p. In the case when the product Aw is large, we find that
r = \p/w/2)\ r=wy )\p In this case, then, the velocity phase is

3.2 Wave Structure of Velocity Field. The solution (22) ex-
hibits three types of dispersive progressive wave trains: one has a
wave front at z=1\2(1+ ), which corresponds to the classical
Stokes waves of a micropolar fluid the difference between the
classical and the present case is that the layer at distance z from

Vg=1/ \)\p at N\ is very small then, the speed phase of thermal . .
waves is huge and this wave decay very fast. the plate oscillates with phase lag of z\/z(1 B -V, where
|
(B-1)G[p(1+p)-1] 232 4_ 2 2
G,+S —— +2(1+ PR+ BG{p N - o1/(1+ B) -
tan W, = 2 2 148 ( B BGip [ B -pl} (42)

G +8 -1

For p=1, this reduces to the classical case [¥;=0 at B>+(G
+4w/2w)B-G/2w=0]. The second wave train at the phase lag
zr,—V,, where

G, \po(l+p8)’
In this case we note W,=0 when P(1+8)=1, f#—1. The third

. s e
wave train at z=f\w(2+p) and the phase lag of (zVw/2+p
—W3), where

tan ¥, = (43)

(44)

5
1

G
tan‘l’3=S —.
)

We note that from Eq (22), when B=0, the third wave train is

(B-1)Gw’p\ +2(1 + B2 + Bo(p*\? o’ -

@*(1/(1+B)=p))

omitted because in this case m; =m2=\5w/2‘

Equation (29) which describes the classical case in Newtonian
fluid (8=0, P=1, N=0), the above three waves trains coalesce
into one with a wave front at z= t\2w and a phase lag of
[(z/x2 ¢)/ w] for a fluid layer at a distance z from the plate,
where

Gz
Gz+2\20
which is the same result as obtained in [5].

For the special case, B=1 from Eq. (30) exhibits three types of
dispersive progressive wave trains, one wave train progresses with

the wave front at z=2\w and phase lag (z/2\Vw—¢;), where

tan ¢ = (45)

an gy = _GatSs 4G(p - 0.5) V3 + 2(w+ GI2)[(p - 0.5)%” + \2pw*] 6
an = = =
"T G+ S5 1 4Gp N3 +2(0 + GI2)[(p - 0.5)20* + Np2e*] - 8072[0.25 — p — p*(1 + N2e?)]
[
The second wave-train at z=wt/r, and the phase lag of [(zr, 2w+ G
—,)], where tan ¢ = oG (48)

=

tan¢2=ﬂ— (p— )

. 47

The third wave at z=t\e’3—w and the phase lag (Nw/3- ¢3), where

1.0

08

506
&

0.4

0.2

0.0 ——
[+ {1} 1 1.5 2 20 2

0.2

G

B=5  poi3s P50

0.4

Fig. 1 Behavior of Re u versus z for p=1, ®=1000, t=0.1, A
=0.005, G=5.0 and B=0, 5, 13.5 and 50
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3.3 Wave Structure of Angular Velocity Field. The angular
velocity fields consist of the one damped harmonic component.

The component has a wave front at z=7\/(2+ f)w, and phase lag
of (zy2w/(2+ B)— ) for a fluid layer at distance z from the plate,
where

1-B)+2G
tan ¢ = % (49)
G(1-p)-2Bw
The group velocity of this wave is given by
1
Vo= 77— (50)

2v’(2+,8)w,

w is very small, then the speed phase of the thermal waves is
huge, and this wave decays very fast.

3.4 Velocity Field. From Fig. 1 we can observe that as
increases the momentum boundary layer thickens/increases. Also,
as B increases the Re u increases.

The same trend can be observed in Fig. 2 for |u|. On the other
hand from this figure notice that as B increases, the peak velocity
decreases.

The effect of X on both Re u and |u| is found to be very small,
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Fig. 2 Behavior of |u| versus z for p=1, ©v=1000, {=0.1, A
=0.005, G=5.0 and B=0.5, 5, and 50

although it changes the character of the velocity field. Since A\
takes very small values, we have presented the graphs of Re u and
|u| in Figs. 3 and 4 for A=0.005, 0=10, G==5, and #=0.1. From
these figures we can notice that as G increases |u| decreases and
there is no change in the fluid boundary layer. Also, the peak
velocity decreases as G increases. For large w, the influence of
both N\ and G is negligible; as seen in Figs. 5 and 6.

The velocity field in Stokes’ second problem consists of three
components: one, corresponding to ™, defines the Stokes-
Rayleigh layer which is of the order O(1/\w), the second, corre-
sponding to e~U'1*"2) represents the thermal layer which is of the
order O(1/r;), and the third wave train, which is similar to e™™1%,
represents the angular momentum layer which is of the order
o(1/w!B).

In order to observe the effect of A on Re u we presented some
data in Tables 1 and 2, below. Thus, in Table 1, which is for G
=-5, it can be seen that an increase in A\ tends to decrease Re u up
to z=0.24 for an increase in A from 0.0 to 0.005, and increase it
thereafter. Again, Re u increases with respect to A up to z=0.2 for
N €[0.005,0.01]. This behavior is reversed for G=3, as is obvi-
ous from Table 2. The underlined data in Tables 1 and 2 are the

0.8

G=5

06

Re u

G=5
04

0.2

0.0

0.2

Fig. 3 Behavior of Re u versus z for p=1.0, »=10.0, {=0.1, A
=0.005, $=0.2, and G=%5
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Fig. 4 Behavior of |u| versus z for p=1, »=10.0, t=0.1, A
=0.005, $=0.2, and G==5
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Fig. 5 Behavior of Re u versus z for p=1.0, ®=1000.0, {=0.1,
A=0.005, 8=0.2, and G=+5

critical values of Re u with respect to \; at these values there is
reversal in response to an increase in A. By comparing our results
for micropolar fluid (8=0.2) in Tables 1 and 2 by Tables 1 and 2
of Puri and Kythe [5], which are for Newtonian fluid (8=0), we

1.2

1.0

=08
3

G=§,-5

0.6

04

0.2

0.0

0.0 0.1 0.2 0.3 0.4 z 0.5 0.6

Fig. 6 Behavior of |u| versus z for p=1, ®=1000, t=0.10, A
=0.005, $=0.2 and G==+5
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Table 1 Re u at t=0.1, 8=0.2, ®=10, G=-5
A Z=0.0 Z=0.2 Z=0.21 7Z=0.22 Z=0.23 Z=0.24 Z=0.26 Z=0.27 Z=03
0.0 0.54030231 0.39969678 0.39029047 0.38083993 0.37136339 0.36187805 0.34294501 0.33352700 0.305 626 80
0.001 0.54030231 0.39967258 0.39026961 0.38082295 0.37135082 0.36187043 0.342948 88 0.333 53740 0.305 659 88
0.005 0.54030231 0.39961228 0.39022452 0.38079521 0.37134256 0.36188378 0.34301181 0.33362828 0.305 846 85
0.01 0.54030231 039961937 039025475 038085123 037142703 036199936 0.34319753 0.33385298 0.306 203 66
Table 2 Re u at t=0.1, 8=0.2, ®=10, G=5
A Z=0.0 Z=0.2 Z=0.21 Z=0.22 Z=0.23 Z=0.24 Z=0.26 Z=0.27 Z=03
0.0 0.54030231 0.66639457 0.663 14905 0.65923660 0.65468794 0.64953327 0.63752403 0.63072722 0.607 502 80
0.001 0.54030231 0.66641877 0.663 16990 0.65925358 0.65470051 0.64954089 0.63752017 0.63071682 0.607 469 73
0.005 0.54030231 0.66647907 0.66321499 0.65928133 0.65470878 0.64952754 0.63745723 0.63062594 0.607 282 76
0.01 0.54030231 0.66647199 0.663 18477 0.65922531 0.65462431 0.64941196 0.63727151 0.63040124 0.606 925 94
5 25
2.0
05 0.6 oj7
z G=5
= 1.5
& z
&
1.0 | G=5
0.5
20 0.0 e
) 1 2 z ]
Fig. 7 Behavior of Re N versus z for p=1, ®=1000, t=0.1, A
=0.5

=0.005, G=5 and B=2.5, 5, 13.5, and 50

find that with increasing 8 Re u decreases for G=-5 and increases
for G=5. On the other hand, at S=0 our results are agree with
those of Puri and Kythe [5].

3.5 Angular Velocity. In Figs. 7-12 we have prepared some
graphs of the angular velocity (Re N and |N|) profiles for various
values of the parameters G,p,\,w, and B which listed in figure
captions.

The variation of the Re N with 8 is displayed in Fig. 7 for w

25

20

10

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 8 Behavior of |N| versus z for p=1, »=1000, {=0.1, A\
=0.005, G=5 and B=2.5, 5, 13.5, and 50
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Fig. 9 Behavior of Re N versus z for p=1, =10, t=0.1, A
=0.005, $=0.2, and G=+5

=10. From this figure it can be seen that Re N increases with 8.

Figure 8 displays the buoyancy-assisted flow (G=5) results for
the distribution of angular velocity within the boundary layer for
various values of B. It is obvious that as the viscosity ratio 3

3.0

25

20

1.5

1.0

0.5

0.0

0 1 z 2 3

Fig. 10 Behavior of |N| versus z for p=1, w=10, t=0.1, A
=0.005, f=0.2, and G=+5
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Fig. 11 Behavior of Re N versus z for p=1, ®=1000, {=0.1, A
=0.005, f=0.2, and G=+5
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Fig. 12 Behavior of |N| versus z for p=1, ®=1000, t=0.1, A
=0.005, B=0.2, and G=+5

increases, the amplitude of the angular velocity profiles decreases.

It is obvious that the effect of increasing values of G results in
a decreasing angular velocity distribution across the boundary
layer as seen in Fig. 9. On the other hand for small (w=10) the
influence of G on |N| is negligible as shown in Fig. 10. For large
w=1000, the influence of G is negligible in both Re N and || (see
Figs. 11 and 12).

3.6 Temperature Fields. Typical variations of the tempera-
ture profiles along the spanwise coordinate are the same that was
presented by Puri and Kythe [5], therefor it is omitted here.

4 Conclusions
Based on the analysis given above, we now state the following:
(1) There are three cases of unique solution u(x,f). These cor-

respond to the nonsingular case of 8#0, /, the singular
case of 8=0, and the case B=1.

474 / Vol. 72, JULY 2005

(2) The solution for the velocity field exhibits three types of
wave motion, one corresponds to the angular velocity, the
second wave corresponds to the thermal wave, and the third
to the classical Stokes wave.

(3) The momentum boundary layer thickens and the real part
of the velocity Re u increases with increasing .

(4) The peak velocity |u| decreases with increasing 8.

(5) The angular velocity profiles |N| decreases but the real part
of the angular velocity Re N increases with increasing .
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Buckling of Long Sandwich
Cylindrical Shells Under External
Pressure

An elasticity solution to the problem of buckling of sandwich long cylindrical shells
subjected to external pressure is presented. In this context, the structure is considered a
three-dimensional body. All constituent phases of the sandwich structure, i.e., the facings
and the core, are assumed to be orthotropic. The loading is a uniform hydrostatic pres-
sure, which means that the loading remains normal to the deflected surface during the
buckling process. Results are produced for laminated facings, namely, boron/epoxy,
graphite/epoxy and kevlar/epoxy laminates with 0 deg orientation with respect to the
hoop direction, and for alloy-foam core. Shell theory results are generated with and
without accounting for the transverse shear effect. Two transverse shear correction ap-
proaches are compared, one based only on the core, and the other based on an effective
shear modulus that includes the face sheets. The results show that the shell theory pre-
dictions without transverse shear can produce highly non-conservative results on the
critical pressure, but the shell theory formulas with transverse shear correction produce
reasonable results with the shear correction based on the core only being in general
conservative (i.e., critical load below the elasticity value). The results are presented for
four mean radius over shell thickness ratios, namely 15, 30, 60, and 120 in order to
assess the effect of shell thickness (and hence that of transverse shear). For the same
thickness, the differences between elasticity and shell theory predictions become larger as
the mean radius over thickness ratio is decreased. A comparison is also provided for the
same shell with homogeneous composite construction. It is shown that the sandwich
construction shows much larger differences between elasticity and shell theory predic-
tions than the homogeneous composite construction. The solution presented herein pro-
vides a means of a benchmark for accurately assessing the limitations of shell theories in

predicting stability loss in sandwich shells. [DOI: 10.1115/1.1934513]

Introduction

The need for lightweight, yet stiff and durable structures has
made the sandwich composite configuration a leading edge tech-
nology with promise for innovative high performance structural
designs. A typical sandwich structure is composed of two thin
metallic or composite laminated faces and a thick soft core made
of foam or low strength honeycomb. This lightweight sandwich
construction is of great interest in the design and manufacture of
aircraft, spacecraft, and marine vehicles. In addition to the high
specific stiffness and strength, sandwich construction offers en-
hanced corrosion resistance, noise suppression, and reduction in
life-cycle costs.

There are several issues and questions related to the use of
sandwich construction that require attention and answers. In ap-
plications involving compressive loading, loss of stability and the
accurate prediction of buckling loads is of major concern. This is
particularly important in sandwich construction because of the
existence of the low-modulus core, which would be expected to
make transverse shear effects even more significant than in homo-
geneous composites. In addition, composite sandwich structures
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Cincinnati, OH 45221-0070.
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are normally envisioned in applications involving relatively thick
construction, therefore thickness effects need to be properly ac-
counted for.

Shell theory solutions for buckling and even initial postbuck-
ling behavior have been produced by many authors (e.g., from the
60’s, Hutchinson [1]; Budiansky and Amazigo [2], many of these
works with elegant variational formulations). Indeed, the exis-
tence of different shell theories underscores the need for bench-
mark elasticity solutions, in order to compare the accuracy of the
predictions from the classical and the improved shell theories.
Several elasticity solutions for monolithic homogeneous compos-
ite shell buckling have become available. In particular, Kardo-
mateas [3] formulated and solved the problem for the case of
uniform external pressure and orthotropic homogeneous material;
in this study, just as in the present one, a long shell was studied
(“ring” assumption). This simplifies the problem considerably, in
that the pre-buckling stress and displacement field is axisymmet-
ric, and the buckling modes are two dimensional, i.e., no axial
component of the displacement field, and no axial dependence of
the radial and hoop displacement components. The ring assump-
tion was relaxed in a further study [4], in which a nonzero axial
displacement and a full dependence of the buckling modes on the
three coordinates was assumed. Other three-dimensional elasticity
buckling studies are the buckling of a transversely isotropic ho-
mogeneous thick cylindrical shell under axial compression [5] and
a generally cylindrically orthotropic homogeneous shell under
axial compression [6]. In addition, three-dimensional elasticity re-
sults, again for homogeneous hollow cylinders subjected to com-
bined axial compression and uniform external pressure, were pro-
vided by Soldatos and Ye [7] based on a successive approximation
method.

The geometry of a circular cylindrical shell is particularly at-
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tractive for constructing elasticity solutions due to the axisym-
metry which simplifies the analysis. Furthermore, a prerequisite to
obtaining elasticity solutions for shell buckling such as the one by
Kardomateas [3], is the existence of three-dimensional elasticity
solutions to the pre-buckling problem. Elasticity solutions for
monolithic homogeneous orthotropic cylindrical shells have been
provided by Lekhnitskii [8]. Recently, elasticity solutions for
sandwich shells were obtained by properly extending the solutions
for monolithic structures [9]. The latter is the pre-buckling solu-
tion needed to formulate the bifurcation problem in the elasticity
context.

As far as shell theory, there are but few studies reported in the
literature that deal with sandwich shell analyses [10-12]. The
comparison to shell theory predictions will be based on the for-
mulas presented in Smith and Simitses [13] and Simitses and
Aswani [14] and specialized to an infinite length cylinder, whose
behavior is similar to that of a sandwich ring.

Formulation

By considering the equations of equilibrium in terms of the
second Piola-Kirchhoff stress tensor, subtracting these at the per-
turbed and initial conditions, and making order of magnitude as-
sumptions on the products of stresses and strains/rotations, based
on the fact that a characteristic feature of stability problems is the
shift from positions with small rotations to positions with rota-
tions substantially exceeding the strains, Kardomateas [3] ob-
tained the following buckling equations:

9 14
0 0 - Y 0 0
ﬂr(a'rr — TreW: T Trzwﬁ) + - ﬂH(Trﬁ_ Tgow; + Tezw(’)

o 0 0
+ Py (7, — T, + T 0y)

1

+ ;(0',,. — Tyt T(r)zw(,.+ nga),— 27,w,) =0, (1a)
0 0 1d 0 0
;(Trﬁ + 0,0~ Trzwr) + ;%(0’99 + T — T(?zwr)
J
o 0 0
+ Py (o + 70, — O 0,)
1
+ ;(27',9 + 0'?,(1)Z - 0'(2,(,@Z + T(;ng - T?Zw,) =0, (1)
0 0 1d 0 0
E(Trz — 0,0yt Trﬁwr) + ;(9_0(7-«9: — ToWpt O-élﬁwr)
d
+—(o,.- T?zwg+ o,
dz N
1
0 0
+ ;(T,Z — 0,0+ Tyw,) =0. (Ic)

In the previous equations, 0?/- and o' are the values of stresses

and rotations, respectively, at the initial equilibrium position (pre-
buckling state), and o;; and w; are the corresponding values at the
perturbed position (buckled state).

The boundary conditions associated with Eq. (1) were obtained
from the traction (stress resultant) relationships in terms of the
second Piola-Kirchhoff stress tensor, and by further considering
the fact that because of the hydrostatic pressure loading, the mag-
nitude of the surface load remains invariant under deformation,
but its direction changes (since hydrostatic pressure is always di-
rected along the normal to the surface on which it acts). By writ-
ing these equations for the initial and the perturbed equilibrium
position and then subtracting them and using the previous argu-
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Fig. 1

Definition of the geometry and the loading

ments on the relative magnitudes of the rotations, Kardomateas
[3] obtained the following boundary conditions on a surface

which has outward unit normal (£,,7):

0 0 5 0 0 -
(Urr - TgW; + Trzw€)€ + (Tre_ Oggw + Tﬁzwe)m

+ (Trz' - ngwz + O'?ng)ﬁ = p(wzrh - (x)gﬁ) > (2(1)

0 0\ 0 0\

(1,94 00, — T, 0 ) + (T gy + T, — Ty,
+ (79, + T?sz - o'?zwr)ﬁ = —p(wzé - w,i), (2b)

0 0 \p 0 0 .

(T + T, — O + (Ty, + Typw, — T,0)M

0 0. \»a p .

+ (Uzz + To,Wr — Trzwﬁ)n = p(a)ﬁf - wr’”) . (ZC)

For the lateral bounding surfaces, m=71=0 and £=1. These con-
ditions will also be used when we impose traction continuity at
the core/face sheet interfaces.

Pre-buckling State. The problem under consideration is that of
a sandwich hollow cylinder deformed by uniformly distributed
external pressure, p (Fig. 1) and of infinite length (generalized
plane deformation assumption). Then, not only the stresses, but
also the displacements do not depend on the axial coordinate.
Alternatively, this is the assumption we would make if the cylin-
der were securely fixed at the ends. An elasticity solution to this
problem was provided by Kardomateas [9]. The solution is an
extension of the classical one by Lekhnitskii [8] for a homoge-
neous, orthotropic shell and was provided in closed form. All
three phases, i.e., the two face sheets and the core were assumed
to be orthotropic. Moreover, there were no restrictions as far as
the individual thicknesses of the face sheets and the sandwich
construction could be asymmetric.

In this configuration, the axially symmetric distribution of ex-
ternal forces produces stresses identical at all cross sections and
dependent only on the radial coordinate . We take the axis of the
body as the z axis of the cylindrical coordinate system and we
denote by R, and R, the inner and outer radii. Let us also denote
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each phase by i where i=f, for the outer face sheet, i=c for the
core, and i=f] for the inner face sheet. Then, for each phase, the
orthotropic strain-stress relations are

(i) @y dy a3 00 0 (i)

f(al()y ail2 aéz aé3 0 0 0 U((le

(1) dyy ay day 0 0 0 (l) .

75}:) “lo o o d, 0 0 ng) . (i=fief)
Y2l [0 0 0 0 a5 07

Yol [0 0 0 0 0 a7

3)
where afj are the compliance constants (we have used the notation
1=r,2=0,3=x).

Let us introduce the following notation for constants which
enter into the stress formulas and depend on the elastic properties:

i2 i2

i ;43 i i a3 .
Bu=dy - s 3122=al22_7 (i=fi.c.fa), (4a)
asz 33
i i 0335’33 . ,331 .
Bin=ap—-—; (i=fic.fa): k= > (i=f1.c.fr).
asz B
(4D)

Then, the pre-buckling stresses in each of the phases, i.e., for

i=f1, ¢, fo, are

a0 (r) = p(CPPF 4 €O, (5a)
a0 (r) = p(CPkr ! = CORp ™), (5b)
700(r) = 72(r) = 7)) = 0, (5¢)

29(7) = p{ e @t k) oy o= k) }
3 dsy

(5d)

Furthermore, the pre-buckling radial displacement is found to
be

W00 () = |:C(z) (B ‘;k :312) C(’) B —kkiﬁliz) r‘kf] . (5¢)

1 1
the other displacements being zero, i.e., v°@ () =w°?(r)=0.

The constants C(l) sz) are found from the conditions on the
cylindrical lateral surfaces (traction free) and the conditions at the
interfaces between the phases of the sandwich structure. Specifi-
cally, the traction conditions at the face-sheet/core interfaces give
two equations [9]

CY.I)(RI +f)fnt 4 Cgf])(Rl +f1) k!

= COR, + f)l + CORy + fr) ! (6a)
and
CORy— )5 + CY(R, - f) !
= CP(Ry - )l + CY (R, - ) he 7. (6b)

The displacement continuity at the face-sheet/core interfaces
gives another two equations

/1 f) f1 _ /1
C(lm(’gll +kn ) (Ry + f)fn = Cgm(ﬁ” kkfl’gm) (Ry + fy)
£l 11
= C(f) i -:{k“g?z_) (Ry +f)ke~ C(C)('BCI k 1802) Ri+f)™
(Ta)

and
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cp bbb g, _ gy cp BB g, g
C&fz) (ﬁzl‘zl _:(kuIB{ZZ) (R2 —fz)kﬂ
2
fr _ of>
oy PR toBE) i (7b)
2

Finally, the conditions of tractions at the lateral surfaces
(traction-free inner surface and pressure, p, at the outer) give

CEf})RIIf]_I + C%fl)R;kﬂ‘l =0, (8a)
R

The six linear Eqs. (6)—(8) can be solved for the six constants
C(ll), C(ZI ), (i=f1,c,f2). Other details of the solution can be found in
Ref. [9].

Perturbed State. In the perturbed position we seek plane equi-
librium modes as follows:

ui(r,0)=Ur)cosnf;, vr,0) =Vr)sinn6,
wi(r,0)=0, i=fc.fo. )
Substituting these in the strain versus displacement
N du; Lov; u; N Ow;
e=—t =iyt Do (10a)

rr or > €pp= r a0 r ¢4 oz

(i) 1 (914,- &U,’ U; (i) (9”[ &W,' (i) (91},‘ 1 (?W,-
= — +———, r=_+_’ = —_——
=00 e R a a T e
(106)
and rotation versus displacement relations
2(1)([) 1 &W 00 2w (i) _ (91,{ %
rTre0 T T a ar
5 ov; v 1du;
2000 =— 42— —— (10¢)
or r rdf

and then using the stress-strain relations in terms of the stiffness

constants, ¢} ;

Uﬁir) iy €hpoci3 00 0 (i)

‘T(e% Cilz 032 C§3 0 0 0 559()9

(1) Ci13 033 Cg3 0 0 0 ?z) .
2170 0 0 ¢ o 0 Jo | =heh
A lo 0 0 0 d oy

7 0 0 0 0 0 ckllve

(10d)

the buckling Egs. (1) result in the following two linear homoge-
neous ordinary differential equations of the second order for Uy(r),
Vi(r), where i=f; for Ry <r<R,+f;; i=c for Rj+f; <r<R,—f,

and i=f, for R,—fr,<r<R,.

(i) 0(’) U
Ay - (<z>+ ) + e
Y , C66 5 €2 2

0(
0 4 0 0'09’) nV
Cia+ Ce6— >
-
Ol
nV;
(cg;+cgz L 1
2 ) r

and
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Table 1

Material properties; 1=r,2=6, 3=z

EZ E1:E3 G}l G12:G23
Material GPa GPa GPa GPa V31 Uy =Va3
FACE SHEETS
Boron/epoxy 221.0 20.7 3.29 5.79 0.45 0.23
Graphite/epoxy 181.0 10.3 5.96 7.17 0.49 0.28
Kevlar/epoxy 75.9 5.52 1.89 2.28 0.47 0.34
CORE
Alloy foam 0.0459 0.0459 0.0173 0.0173 0.33 0.33
(isotropic)
0(i) 0(i)r 1 (c)
fop ro % c
(cgg >v' (cgg + ol Zoo —g )—' QW+ —(U +nV)=c)UL+ 22U +nV,)  (13a)
r r
O(z) 0(i)r d
ro Vi an
+[ <c66+c§gn2+— L]—; ol )
() o)
2 ’ 03 Iy (- e | Vit nU;
0(i) U 0(!) 66 2 J Co6 ~ 2 r
(c )+ ) T )h+ (c(gg+c(2’2)+ )
1 0(c) 0(c)
2 2 ©, % |y _ [ o | Vet nUe 3
. Coo + Vi—\cge — . (13b)
ro, nU; 2 2 r
— |—= =0. (11b6) . L
r Displacement Continuity:
The associated boundary conditions are as follows: Uy=U,; V=V, (13¢)

(a) At the inner and outer bounding surfaces, we have the fol-
lowing two traction conditions at each of the surfaces:

)
Ui+ ‘Z(U,+nvj) =0 (12a)

and
(cgg .

where j=f; and p;=0 at r=R; (inner bounding surface) and j
=f, and p;=p at r=R, (outer bounding surface).

(b) At the face-sheet/core interfaces, we have the following four
conditions at each of the interfaces:

Traction Continuity:

(c(i) (’ +pj)V +nU
66 5

ol
crr,(/)+l7_j>v{ _
2 / r

(12b)

where j=f, at r=R;+f; (inner face-sheet/core interface) and j
=f, at r=R,—f, (outer face-sheet/core interface).

Solution of the Eigen-Boundary-Value Problem for Differential
Equations. Equations (11)—(13) constitute an eigenvalue problem
for differential equations, with p the parameter (two point bound-

ary value problem). An important point is that o'o(i)(r) 0(i)(r) and

0(' (r) depend linearly on the external pressure, p (the param-
eter) through expressions in the form of Egs. (8) and this makes
possible the direct application of standard solution techniques.

With respect to the method used there is a difference between
the present problem and the one for the homogeneous orthotropic
body solved by Kardomateas [3]. The complication in the present
problem is due to the fact that the displacement field is continuous
but has a slope discontinuity at the face-sheet/core interfaces. This
is the reason that the displacement field was not defined as one

Table 2 Critical pressure in N/m2. Geometry: f=0.1 in., ¢=1.0 in. and B=3 in.

Classical shell®
no shear
(% versus elast)

Ry/h Elasticity

Shell w/shear®

based on G
(% versus elast)

Shell w/shear®
based on core only
(% versus elast)

BORON/EPOXY faces w/ALLOY-FOAM core

15 741,773 6,898,740 (+930.0%)
30 277,305 862,343 (+310.9%)
60 70,416 107,793 (+53.0%)
120 11,817 13,474 (+14.0%)

GRAPHITE/EPOXY faces w/ALLOY-FOAM core

15 720,842 5,650,460 (+783.9%)
30 258,549 706,307 (+273.2%)
60 61,528 88,288 (+43.5%)
120 9,918 11,036 (+11.3%)
KEVLAR/EPOXY faces w/ALLOY-FOAM core

15 605,472 2,370,590 (+391.5%)
30 171,351 296,324 (+72.9%)
60 31,418 37,040 (+17.9%)
120 4,476 4,630 (+3.4%)

651,125 (-12.2%)
253,721 (-8.5%)
67,383 (-4.3%)
11,717 (-0.85%)

637,826 (-11.5%)
238,236 (=7.9%)
59,207 (-3.8%)
9,829 (~0.9%)

551,668 (=8.9%)
162,433 (-5.2%)
30,712 (=2.2%)
4,403 (-1.6%)

899,768 (+21.3%)
323,361 (+16.6%)
76,087 (+8.0%)
12,203 (+3.3%)

874,654 (+21.3%)
298,643 (+15.5%)
65,825 (+7.0%)
10,168 (+2.5%)

719,856 (+18.9%)
188,347 (+9.9%)
32,397 (+3.1%)
4,470 (-0.13%)

*Equation (14).
quuation (17).
“Equation (18b).

496 / Vol. 72, JULY 2005

Transactions of the ASME



Table 3 Critical pressure in N/m?. Effect of increased face thickness: f=0.3 in., ¢=0.6 in., and B=3 in.

Classical shell
no shear

Ry/h Elasticity (% versus elast)

Shell w/shear

based on G
(% versus elast)

Shell w/shear
based on core only
(% versus elast)

GRAPHITE/EPOXY faces w/ALLOY-FOAM core

15 1,244,010 11,731,900 (+943.1%)
30 393,573 1,466,490 (+372.6%)
60 105,699 183,311 (+73.4%)
120 19,297 22914 (+18.7%)

416,091 (-66.6%)
188,038 (-52.2%)
67,900 (-35.8%)
16,081 (-16.7%)

1,501,160 (+20.7%)

542,378 (+37.8%)
128,553 (+21.6%)
20,709 (+7.3%)

function but as three distinct functions for i=f}, ¢, and f, i.e., the
two face sheets and the core. Our formulation of the problem
employs, hence, “internal” boundary conditions at the face-sheet/
core interfaces, as outlined above. Due to this complication, the
shooting method [15] was deemed to be the best way to solve this
eigen-boundary-value problem for differential equations. A special
version of the shooting method was formulated and programmed
for this problem. In fact, for each of the three constituent phases
of the sandwich structure, we have five variables: y,=U,, y,=U;,
y3=V;, y4=V;, and ys=p. The five differential equations are: y|
=y,, the first equilibrium Eq. (11a), y3=y,, the second equilibrium
Eq. (115) and y;=0.

The method starts from the inner boundary r=R; and integrates
the five first order differential equations from R; to the inner face-
sheet/core interface R|+f (i.e., through the inner face sheet). At
the inner bounding surface, R, we have three conditions, the two
traction boundary conditions, Egs. (12), and a third condition of
(abritrarily) setting Uy =1.0, therefore we have two freely speci-
fiable variables. The freely specifiable starting values at R; are
taken as the ys (pressure), and the y; (V) and these are taken as
the values from the shell theory (described later). Then, the three
boundary conditions at r| allow finding the starting values for y,
¥, and y4. Once we reach the inner face-sheet/core interface, R
+fi, the tractions from the inner face-sheet side are calculated;
these should equal the tractions from the core side, according to
the boundary conditions on the face-sheet/core interface, Eqs.
(13a) and (13b). This allows finding the slopes of the displace-
ments, y,=U, and y,=V/, for starting the shooting into the core
(notice that the other three functions, y,=U,, y3=V,, and ys=p are
continuous according to Eq. (13¢), and their values at R, +f, have
already been found at the end of the integration step through the
inner face sheet). The next step is integrating the five differential
equations from R +f; to R,—f>, i.e., through the core. In a similar
manner, once we reach the outer face-sheet/core interface, R,
—f5, the tractions from the core side are calculated; these should
equal the tractions from the outer face-sheet side, per Eq. (13a)
and (13b), and this allows finding the slopes of the displacements,
y2=Up, and y,=Vj,, for starting the shooting into the outer-face
sheet "(again, the other three functions are continuous and their
values at R,—f, have already been found at the end of the inte-
gration step through the core). The third step is the integration
through the outer-face sheet. Once the outer bounding surface, R,,

is reached, the traction boundary conditions, Egs. (12), which
ought to be zero, are calculated. Multi-dimensional Newton—
Raphson is then used to develop a linear matrix equation for the
two increments to the adjustable parameters, ys and y;, at R;.
These increments are solved for and added and the shooting re-
peats until convergence. For the integration phase, we used a
Runge—Kutta driver with adaptive step size control. The method
produced results very fast and without any numerical complica-
tion.

Results, Comparison with Shell Theory and Discussion

As an illustrative example, consider a sandwich ring with the
following geometry: core, c=25.4 mm (1 in.), face sheets f;=f,
=f=2.54 mm (0.1 in.) and width B=76.2 mm (3 in.). This value
for B was chosen in order to assume that buckling is in the plane
of the ring and not out of the plane. Note that the sandwich is
symmetric about its midsurface. The total thickness of the ring is,
thus, h=2f+c=30.48 mm (1.2 in.), and is kept constant. The
mean radius, R, is chosen in such a manner that the ratio Ry/h
ranges from 15 to 120.

Material properties for the face sheets and the core are given in
Table 1. The core is isotropic alloy foam and the face sheets are
boron/epoxy or graphite/epoxy or kevlar epoxy unidirectional
with O deg. orientation with respect to the hoop direction. Note
again that 1 is the radial (r), 2 is the circumferential (6), and 3 the
axial (z) direction.

Notice also that by referring to Eq. (1), the compliance con-
stants for each orthotropic phase are

1 1 1 1 1
an =" an=_5 a3=5 d4=""; d55=
E, Ey’ Ey’ Go’ Gy’
1
Ae6 = >
G
1 ) S
2== ’ 3=~ 5 23=" .
£, E; E;

Since the shell is considered to be very long, the buckling
analysis reduces to that for a ring [12]. If the transverse shear
effect is neglected, the expression for the pressure becomes (clas-
sical)

Table 4 Critical pressure in N/m2. Comparison with homogeneous: f=0.1 in., c=1.0 in., and B=3 in.

Clasical shell
no shear

Ry/h Elasticity (% versus elast)

Shell w/shear Shell w/shear

based on core only
(% versus elast)

based on G
(% versus elast)

GRAPHITE/EPOXY homogeneous (no sandwich)

15 12,594,400 13,407,400 (+6.5%)
30 1,641,360 1,675,930 (+2.1%)
60 208,228 209,491 (+0.61%)
120 26,180 26,186 (+0.03%)

12,831,500 (+1.9%)
1,657,330 (+0.97%)
208,905 (+0.33%)
26,168 (=0.05%)

12,924,100 (+2.6%)
1,660,400 (+1.2%)
209,002 (+0.37%)
26,171 (=0.03%)
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, 14
BR (14)

Pce
where (EI)q is the equivalent bending rigidity, given in terms of

the extensional moduli of the face sheets E; and the core E, by
[16] '

f3 (f ¢ )2 C3
El)=w|E—~+2Ef\=+=| +E.—|. 15
( )eq W|: f6 fj ) c 12 ( a)
If the transverse shear effect is accounted for, then
(ED) (ED)
Pwishear = — 5= — (16&)

BRY(1 +4k,)’ CR}’

where

c:f KGdA, (16b)
A

K being a shear correction factor taken as equal to one and G is
the transverse shear stiffness of the sandwich cross section.

Two different expressions for C are employed herein. In the
first case, it is assumed that only the core contributes, in which
case, C=BcGY, and

(EDg
= S

BcG{,R;
where G, is the shear modulus of the core.

In the second case, an effective shear modulus for the sandwich

s1 (17)

section, G, which includes the contribution of the facings, is de-
rived based on the compliances of the constituent phases [16]. The

expression for G is given by
2f+c_2f ¢

— =5t

G G, Gp

(18a)

where G/, is the shear modulus of the facings. Therefore, in this
case
ko= LI)“]_.
B(2f +¢)GR}

Table 2 gives the critical pressure from the elasticity formula-
tion for a range of mean radius over total thickness ratios, in
comparison with the classical shell and the two shear deformable
shell formulas.

In all cases, n=2 was used in the buckling modes, Eq. (9). This
has been well established for isotropic cylindrical shells under
external pressure; however, since we are dealing with a sandwich
structure whose core has elastic properties that are orders of mag-
nitude different from those of the face sheets, verification of this
postulate was needed. Indeed, in all cases examined, an exhaus-
tive search was made for the n that results in the minimum eigen-
value, and it was indeed found that n=2 corresponds to the lowest
eigenvalue. For example, for the case of graphite/epoxy faces with
alloy-foam core and Ry/h=30, the eigenvalues found from the
elasticity solution were (in N/m?) as follows: (n=2;258,549),
(n=3;397,355), (n=4;469,798), (n=5;512,410).

Now coming to the results in Table 2, it is seen that the classical
(no shear) formula can yield results highly nonconservative, even
approaching ten times the elasticity value for the lower ratio of
Ry/h and boron/epoxy case. Both shear correction formulas yield
reasonable results with the shear correction formula based on the
core only being in general conservative as opposed to the shear

(18b)

correction formula based on an “effective shear modulus,” G,
which is nonconservative.

An illustration of the results in Table 2 is provided in Fig. 2,
which shows the critical pressure, p,, normalized with the simple
formula from classical shell theory, p.¢, Eq. (14), as a function of
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Fig.2 Critical pressure, p,,, normalized with the classical shell
formula, p.,, Eq. (14)

the mean radius over thickness ratio, Ry/h. The results are derived
from the elasticity formulation and the two shell theory formulas
with transverse shear, for the case of graphite/epoxy faces with
alloy-foam core. The results show clearly the very significant ef-
fect of transverse shear as the ratio Ry/h becomes smaller (thicker
shell), in the sense that p, is only about 12% of the p., (which
ignores transverse shear) for Ry/h=15. It is also seen that the
elasticity results are between the two shells with shear correction
formulas, as already discussed in the previous paragraph. For thin-
ner shells, the transverse shear effects get diminished; for ex-
ample, for Ry/h=120, the p, is about 90% of the p.,.

In the results presented in Table 2, the face sheets were quite
thin and the shear correction formula based on the core only, Eq.
(17), seemed to be more accurate. In order to further examine this
premise, the critical load was calculated for a construction in
which the total thickness remains the same but the face sheet
thickness is increased at the expense of the core. The results, listed
in Table 3, show that the shear correction formula based on an
effective modulus (which includes the core), Eq. (18b), is now
more accurate.

In order to compare with the homogeneous, monolithic, Table 4
gives the critical pressure for a construction made of graphite/
epoxy homogeneous, i.e., no sandwich. It is seen that the differ-
ences from the elasticity values are modest, even with the classi-
cal shell formula. This illustrates the nature of sandwich
construction, in which buckling is a more demanding issue.
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Anisotropic Elastic Tubes of
Arbitrary Cross Section Under
Arbitrary End Loads: Separation
of Beamlike and Decaying
Solutions

First approximation analytical solutions are constructed for finite and semi-infinite, fully
anisotropic elastic tubes of constant thickness h and arbitrary cross section, subject to
purely kinetic or purely kinematic boundary conditions. Final results contain relative
errors of O(NhIR), where R is some equivalent cross sectional radius. Solutions are
decomposed into the sum of an exact beamlike or Saint-Venant solution, treated in
Ladeveéze et al. (Int. J. Solids Struct., 41, pp. 1925-1944, 2004) and extended in an
appendix; a rapidly decaying edge-zone solution; and a slowly decaying semi-membrane-
inextensional-bending (MB) solution. Explicit conditions on the boundary data are given
that guarantee decaying solutions. The MB solutions are expressed as an infinite series of
complex-valued exponential functions times real-valued one-dimensional eigenfunctions
which satisfy a fourth-order differential equation in the circumferential coordinate and

depend on the pointwise cross sectional curvature only. [DOL: 10.1115/1.1934532]

1 Introduction

Consider a straight tube constructed of elastic, anisotropic lay-
ers of constant but possibly different thicknesses. If the tube is
under surface loads and any combination of end loads and dis-
placements (compatible with overall equilibrium and no rigid-
body displacement), then, as Ladeveze and Simmonds [1,2] have
shown (within the framework of linear elasticity), the solution of
the governing equations may be decomposed exactly into a beam-
like part and a decaying part. We shall refer to these two compo-
nents as a Saint-Venant (SV) part and a decaying (D) part, respec-
tively.

As e=h/R, the constant thickness of the tube divided by some
typical radius of the cross section, approaches zero, the D part of
the solution displays three characteristic decay lengths: (1) a very
short length, O(h), associated with a three-dimensional edge ef-

fect; (2) a moderately short length, O(\e‘“‘hR), associated with the
bending edge effect of classical (ﬁrst—amoximation) shell theory;
and (3) a very long length, O(RVR/h), associated with the
semimembrane-inextensional bending (MB) behavior of the shell.
(We note that each of these decay lengths also depends strongly
on the ratios of various anisotropic elastic coefficients.)
Ladeveze et al. [3], using the linear first-approximation shell
theory of Sanders [4] and Koiter [5], have analyzed the beamlike
behavior of an elastic tube of arbitrary anisotropy and cross sec-
tion. Some corrections and extensions are presented in the Appen-
dix. In the present paper, we examine the complementary solu-
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tions associated with the decay lengths (2) and (3) mentioned
above in the absence of surface loads; an accurate resolution of
the three-dimensional zone (1) lies outside the range of any shell
theory (despite many claims to the contrary in the literature). (For
references to work on this latter problem, see, for example, the
book edited by Ladeveze [6] or an earlier review paper by Sim-
monds [7] where citations of relevant papers by Friedrichs and
Dressler, Goldenveiser, Green, Gregory and Wan, Ladeveze, and
others are given.) In particular, for the two extreme cases of (A)
end loads only or (B) kinematic end conditions only, we develop
conditions on the data that insure decaying solutions. Moreover,
we show that these data may be decomposed into a set that, to
lowest order, i.e., to within a relative error of O(g!?), determines
the MB solution and a complementary set that subsequently de-
termines the EZ solution. We note that, except in relatively long
tubes, the MB solution may well be as important in the interior of
the tube as the beamlike solution.

2  Geometry

In a fixed Euclidean frame {i,j,k}, let (r, 8,x) denote a set of
circular cylindrical coordinates with associated orthonormal base
vectors [e,(6),e,(0),k}. We take the vector representation of the
reference surface of the tube to be

Tx=Rxk+r(y)], res,

Here, 27R is the circumference of 7, and x and y are, respectively,
dimensionless distances along and around 7. Differentiation with
respect to x and y will be denoted by a prime (') and a dot (°),
respectively. Thus, with r=|r| denoting dimensional radial dis-
tance, we have

Osx=<|,

0<y<2m (1)

y 7
r=r(y)e (6 and 6= if M’ )

0 r(7)

where the = sign allows for the possibility that S might not be
star shaped with respect to the chosen axis of 7. (If 7 is a circular
cylinder, r=1 and y=6.) Finally, we let
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k=(r"Xr")ek 3)

denote the dimensionless curvature of S.

3 Governing Equations

When convenient, we use Cartesian tensor notation, with x
=x; and y=x,. Thus, let 0hN,g Oh*M g, (O'/E)Ea[;, and
(o/hE)K ap @=1, 2, denote, respectively, the (modified, symmet-

ric) stress resultants, stress couples, extensional strains, and bend-
ing strains of the linear shell theory of Sanders [4] and Koiter [5],

where o is some measure of the stress level in the tube and E is
some nominal Young’s modulus. In component form, with the
notation

Ta/ﬁ = {Txa Tv Ty}v (4)

the equilibrium and compatibility conditions of the Sanders-
Koiter theory are

N +[N-(1/2)exkM] =0, (5)
N’ + Ny +ex[3/2M" + M3]=0, (6)
—e(M{+2M'*+ M}) + kN, =0, (7)

K, —[K+(1/2)exE]" =0, (8)
-K'+K.+ex[(3/2)E' -E]=0, 9)

s(E;—ZE"+E;‘)+KKX=O. (10)

These equations have been written in a form that displays the
static-geometric duality of Goldenveiser [8] and Lure [9]. This
duality implies that the equilibrium Egs. (5)—(7) go over into the
compatibility conditions (8)—(10) if the variables below on the left
are replaced by those on the right

Naﬁ:KaB’ Maﬁ:_EaB' (11)
Here, we have introduced the “hat” notation
faﬁ = ea)\eBy,T}\/.L = {Ty,_ T, Tx}’ (12)

where e, is the two-dimensional alternator.

To complete the set of field equations, we must add constitutive
relations. To exploit fully the economy offered by the static-
geometric duality, we follow McDevitt and Simmonds [10] and
write these in the form

_Eaﬁ= lﬂ,NﬂB:_Aaﬁ)\,uN)\p.*' Caﬁ)\p.K)\/.L (13)
M,p= lﬂ,xaﬂ:AZﬂqum"' CZB)\MN)\W (14)

where A, , is the dual of —A g Cogy = Cruagp is the dual of
CaB}\,u,! and

Y= (1/2)(142;;)\#[((151()\,4 + CoprnulNVapKyu + CZB)\/.I,K&[;N)\,LL

- Aaﬁ}\p.NaBN)\p,) (15)
is the dimensionless mixed-energy density. The quadratic form
(15) implies that, in general, there are 21 dimensionless elastic
coefficients.

Finally, we add the auxiliary strain-displacement relations of
the Sanders-Koiter theory (which must be integrated to obtain

displacements for use in boundary conditions). If (R%a/ Eh)U de-
notes the displacement field, where

U=Ux,y;e)k + V(x,y;e)t(y) - W(x,y;e)n(y) (16)
and t=r*(y), n=k X t(y), then these take the form
eE,=U', 26E=U"+V', gE,=V'+«kW (17)

and
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K.=-W',

; K=-W'"+@3/4)xV' - (1/4)xU,

(18)
K,=— (W - «V)".
(Analogous stress-stress function relations exist, but are not
needed in what follows.)

Let ohRT denote the net traction acting on the material to the
left of any cross section of the tube and let ohR*M denote the net
moment with respect to the centroid (r=0) of the cross section.
Then

2
sz N,(x,y;e)dy
0

and

21
M=f [r(y) X N,(x,y:e) — eM (x,y:e)t(y)ldy,  (19)
0

where

N, =Nk + [N+ (3/2)exM]t— (M. + 2M*)n (20)
is the effective dimensionless axial stress resultant in the Sanders-
Koiter theory. (See Budiansky and Sanders [11], Eq. 15.) The

beamlike (SV) solutions developed by Ladeveéze et al. [3], in the
absence of surface loads, satisfy the global beam equations

T=T(0) and M=M(0)-xk X T(0) (21)

as well as all the local field equations [providing certain negligible
terms of O(e) are added to the stress-strain relations]. The decay-
ing EZ and MB solutions we now develop satisfy all the local
field equations to O(g"/?) plus the global conditions T=M=0.

4 Edge-zone (EZ) Solutions

To extract these from the field equations, we scale certain of the
variables as follows:
x=g'"”x, (N.K)=&""(N.K), (N.K,)=e(N.K,)
(22)

(U, V)=&"(U,V), W=¢eW,

where an overbar indicates that a variable is a function of x, y, and
& only. Then, we set d()/dx=()# and assume that differentiation

with respect to X and y does not change orders of magnitude.
Thus, Egs. (5)-(10), (13), (14), (17), and (18) assume the forms

N+ N =0(e'?), (23)

N*+N; +0(e'"), (24)

- M7 + kN,=0(e"?), (25)

Kl-K*=0(e"?), (26)

- K"+ K:=0('"?), (27)

EV + kK, =0(s'"), (28)

Eop=A,gN, - Cop K, +0(s'), (29)

MaﬂzAZﬂHEx"' Cllaﬁﬁy'" 0(e'), (30)

E. =U* 2E=V+0(e"), Ey=KW+O(8”2), (31)
K==W K=-W"+0("?), K,=—W*+0(c"?).

“ (32)

From (25) and (30), we have
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— (Al K, + Ci1 ;N + kN, = O(e'?), (33)
and from their duals, (28) and (29)
(Allllﬁy - Cink )™ + kK, = 0(e"?). (34)

Noting that Cyy;;=C},;;, we introduce the complex-valued un-
known

NyEI\_[,v+i\“"AT111/A1111[_(x (35)
and constant
) i
o= = - . (36)
VA A +HiChn
Then Egs. (33) and (34) may be combined as
./T/f#— ﬁzk(y)Nv =0(e'?). (37)

Ignoring the O(g'?) term, we write the general solution of Eq.
(37) as

N, = Co(y)exp[+ax(y)xTY, (38)

where the complex-valued function C, will be determined from
the boundary conditions by combining them with the MB solu-
tions that we determine next. (If k<0, «!/? is imaginary.)

5 Semimembrane-Inextensional-Bending (MB) Solu-
tions

To obtain equations for the MB solutions, we scale certain vari-

ables as follows:
e'’x=%, (NK)=&"(NK), (N,.K)=s(N,K,), U=&"U,
(39)

where a tilde denotes that a variable depends on X, y, and & only.
Then, with d()/dx=()" and the assumption that differentiation with
respect to X does not change orders of magnitude, Egs. (5)—(10),
(13), (14), (17), and (18) take the form

N;+N*=0(&"?) (40)

N+ N3+ kM3 =0(e"?), (41)

—M;‘+ KﬁyzO(s”z), (42)

K,-K*=0(e"?), (43)

—1?"+12;—KE;=O(8”2), (44)

E}'+ KI?X=O(8“2), (45)

Eap=AupnN,— Copnk, +0(e'"), (46)

M p=AnpK, + CopoN, +0(s"?), (47)

E=U, U+V=0E"), V+xW=0(), (48)
K.=—W", K=-W"+3/4)xV - (1/4)kU",

(49)

R, = ("~ V.

By differential elimination of N and ﬁy, Eqgs. (40)—(42) reduce
to

Ny =(MM;)*+0(e"), (50)

where
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= i[p(y)di] +x(y), p=x(y). (51)
y

dy

Substituting Eq. (47) into Eq. (50) and noting that C2222=C;222,
we have

Ny =[M(CyoN, +A;222ky).]- +0(e'"?). (52)
The dual of Eq. (52) follows readily as
1?} = [M(CZZZZEy ~ApN) T +0(e?). (53)

If we set

No= N+ iNApl Ay, and 22 = Cogy = iNApyypAg,
(54)
then Egs. (52) and (53) may be combined into the single complex-
valued equation
Ny = B(MAY)+0(e"). (55)

To O(&!?), Eq. (55) admits homogeneous solutions of the form

Ny = C.exp(Mad)Q(y), (56)

where the 6‘1 are complex-valued constants and () is a real-valued
function satisfying the differential equation

NQ = (M) =[p(Q~]" +[x(»Q°T
and auxiliary condition
Qy +27) = Q(y).

Note from Egs. (57) and (58) that if A\ # 0, then f%"ﬂdy:O.

Since Q is 27-periodic, Egs. (57) and (58) represent a standard,
self-adjoint eigenvalue problem which, if « is suitably smooth and
nonvanishing on [0,27] (as we shall assume), admits a countable
set of real-valued eigensolutions, {)\2,0,1}::0, where 0=\g<\,
<\, <--- and the (), satisfy the orthonormality condition

(57)

(58)

2
J Q,,»Q,(y)dy=6,, mn=0,1,2,..., (59)

0
where &, is the Kronecker delta. The two eigenfunctions corre-
sponding to A=0 have the explicit forms

0 1

Qy=1/V27 and Q= cer(y). (60)
Here, ¢ is a constant vector perpendicular to k satisfying mcelec
=1, where

2
I= (1/7T)f r(y)r(y)dy=1". (61)
0

(For a circular cross section, I is the two-dimensional identity
0 1

tensor 1.) To make () orthogonal to €}, we take the tail of r to

coincide with the centroid of the cross section of the reference

surface so that
2
f r(y)dy=0.

0

(62)

The nondecaying solutions associated with the eigenfunctions
(60) are the Saint-Venant (beamlike) solutions discussed in [3]
and the Appendix.

6 Reciprocity

As in Ladeveze and Simmonds [2], the Betti reciprocity prin-
ciple may be used to ensure that end data produce decaying solu-
tions. To present this principle in its various forms, let
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s=(V,eE,,&'"Z.;F,&e'"Z,eM,) = (V.F) (63)

denote a kinematic-kinetic pair, where Z and its dual Z: are de-
fined in Eq. (A6), and

V=Uxy:e)k+V(x,y;e)t(y) and F = F(x,y;e)k + S(x,y;e)t.
(64)

If we introduce the following inner product at any section x=
constant;

2
[5.5], = f (F-V-FE-V)dy. (65)
0

then, for any two states s and § satisfying the field Egs. (5)—(10)
the Betti reciprocity principle in the Sanders-Koiter theory implies
that

[s,5],=[s,5],, O0<a<nx. (66)

That is, [s,s], is a constant.

7 End-Loaded, Semi-Infinite Tube

We consider first a semi-infinite tube. Of the various combina-
tions of kinematic-kinetic end conditions that might be imposed in
accordance with Eq. (A7), the dimensionless form of the external
virtual work, we confine ourselves to two extreme cases: (A) F
(i.e., F, Z, and M) prescribed and (B) V (i.e., V, Zs, and E,)
prescribed. )

7.1 Case A: End Loads Prescribed. In Eq. (66) let s be a
linear combination of rapidly decaying edge-zone (EZ) solutions
and slowly decaying semimembrane-inextensional-bending (MB)
solutions. For § we merely take the rigid-body solution

U=D+RX (r+xk), F=0, Z=Z.=M,=E,=0, (67)

where D and R are constant displacement and rotation vectors.
Since s comprises exponentially decaying solutions whereas the
components of § have, at most, algebraic growth, lim[s,s],=0, so

X—0

that at a=0, Eq. (66) reduces to

2 2
[5.5]y=~De f F(y)dy - Re f [x(») X E()Jdy =0,
0 0

(68)

where, here and henceforth, a hat (A) is used to denote a prescribed
variable. As D and R are arbitrary, Eq. (68) yields the familiar
requirement that, modulo a rigid body movement and in the ab-
sence of surface loads, the total edge force and moment must
vanish for exponential decaying solutions to exist.

To determine the decaying solutions themselves, we introduce
the scaled EZ (7)) and MB (7) variables defined in Egs. (22) and

(39) and take F in the form
F=F()k+e"2S(0)t(0), (69)

where [ S’Tli‘ dy=/[ 3”r><f‘dy=0 and where the normalizing stress
measure ¢ introduced at the beginning of Sec. 3 is chosen so that

SOILIZO)LIM ()]} =1. (70)

5

max {|F(y)
O=sy<2m

Note that Eq. (A14) implies that S=0(&¥?) and S=0(g"?)
whereas, Eq. (A13) implies that F=0(g%?) and F=0(1). By Egs.
(A6), the boundary conditions take the form

F(0,y;6) = F(y) + O(6¥?) = F(0,y;0) = F(y),  (71)

5(0,y;€) = S(y) + O(g) = 5(0,y;0) = S(y), (72)
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p(1)M*(0,y;€) = Z(y) + O("?) = p(y)M*(0,y;0) = Z(y),
(73)

M(0,y58) + M,(0,y58) = M,(y) = M,(0,y;0) = M,(y)

- M (0,y;0). (74)

Thus, the prescribed vector stress resultant (69) determines the
membrane-inextensional bending (MB) solution to lowest order.

We now determine the MB solution explicitly. Setting e=0 and
C_=C, we have, by Egs. (54), (56), (71), and (A5)

©

F0.y:0)=N,0.5:0) = X RC,Q,0) = F(),  (79)
1
where from the orthogonality condition Eq. (59)
27
RC,= f F;)Q,()dy = F,. (76)
0

Next, from Egs. (40), (57), (75), and the second part of (A5), the
condition that N must approach zero as X— is

%

5(0,y;0) = N(0,;0) = >, R(&C,) M)\, = S().
1

(77)

To obtain from Eq. (77) a second relation for C ,, to complement
Egq. (76), note by Egs. (57) and (59), and an integration by parts
that

2 2
- f (MD;) s dy = f (MO;)*Qdy =N} 8- (78)
0 0
Thus, Eq. (77) yields
27
- R(EC,) = (l/kn)J SO ()dy =S, (79)
0

It now follows from Egs. (76) and (79) that, with Z=a@+ip

~ 4 aF, +§
ot 28]

- (80)
B
and, from the second part of Eq. (54)
[ a [ R 2
V2) (= = NAnnAy, + Ch+ Con. (81)

Next, we determine the edge-zone (EZ) solution. To satisfy
Eqgs. (73) and (74), we insert the real part of Eq. (38) into Eq. (25)
integrate either once or twice with respect to x, and discard (non-

decaying) functions of integration. With C_=C, the resulting ex-

pressions for M, and Mf evaluated at x=0 and inserted into Eqgs.
(73) and (74), yield

RC(y) = Z(y) (82)
and

= RIC()"(y)/E] = M (y) = M(0,y;0) = AM(y).  (83)
Because the MB can be determined first,
M (0,y;0)—and hence AM(y)—is known. Thus, with 1/i=a

+if3

solution

C=2(y) +iD(y), (84)

where
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l_|: A@ + aZ(y):| if k(y)>0
p=4" <) (85)
%[AM B2y )} if k() <0
al V)|
and, from Eq. (36)
\"E ; = i\/\"/AuuATm+C%111ic%m~ (86)

7.2 Case B: End Displacement and Rotation Prescribed.
To guarantee decaying solutions, we need conditions on the pre-
scribed kinematic variables. However, we may deal with these
later because the forms we have assumed for the EZ and MB
solutions decay automatically, regardless of the boundary
conditions.

Let the prescribed kinematic boundary conditions have the form

E\y),
(87)

V(0,y;8) =20k + V()t(y), E,0,y;e) =

Z.(0,y38) = Z(y)

where Z. is defined in the second part of Eq. (A6) and the nor-
malizing stress measure o is chosen so that

2y =1. (88)

<y<2

By adding the EZ and MB solutions and noting the scalings in
Egs. (22) and (39), we may express the boundary conditions as
uy, (89

U(0,y;e) = U(y) + O(g) = U(0,y;0) =

V(0,y;8) = V(y) + O(¥?) = V(0,y;0) = V(y),  (90)

p(EN0,y1€) == Z:(y) + O(e"?) = p(») EN(0,y;0) = - Z.(y),
1)

E\0,y36) + E,(0,y:8) = Ey(y) = E(0,y30) = E,(y) - E,(0,y;0),
(92)

where the last two boundary conditions are the duals of Egs. (73)
and (74). Note that the prescribed axial and tangential end dis-
placements determine the membrane-inextensional bending (MB)
solution to lowest order.
Because in the second and third part of Eq. (18), and Eq. (A5),
the static-geometric duality (11) imply that
Fe=K,+&(pE)"=[M(V)]" (93)
and
= S.==K+&{lp(= E, + 2E°)]"+ (3/2)kE} 